

# **DVV** Clarification

CRITERIA VII

# **METRIC 7.1.3**

# ENERGY AUDIT REPORTS

Submitted to



THE NATIONAL ASSESSMENT AND ACCREDITATION COUNCIL

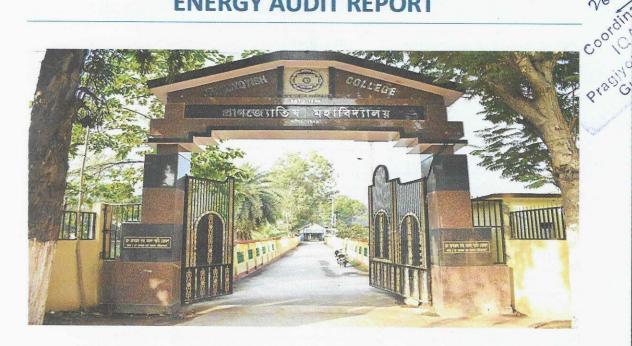


# **PRAGJYOTISH COLLEGE**

[ESTD: 1954; NAAC ACCREDITED (2004-09, 2011-16, 2021-26); RECOGNISED UNDER SECTIONS 2(f) AND 12(B) OF UGC]

GUWAHATI – 781009, ASSAM, INDIA https://pragjyotishcollege.ac.in/

Dr. Manoj Kumar Mahanta PRINCIPAL


#### DECLARATION

I hereby declare that the data furnished and the documents submitted with regard to Energy Audit Report are true and authentic to the best of my knowledge and belief.

MerQO

Dr. Manoj Kumar Mahanta (Principal) Pragjyotish College Guwahath Go College PRAGJYOTISH COLLEGE PRAGJYOTISH COLLEGE BHARALUMUKH BHARALUMUKH BHARALUMUKH

# **ENERGY AUDIT REPORT**





# Pragjyotish College, Guwahati

Address: Santipur, Guwahati-781009, Assam.

December 2019

**Conducted By** 

# **PPS Energy Solutions Pvt Ltd.**

**Engineering Consultants** Address: Plot No-18, Girish Housing Society Warje, Pune - 411058, Maharashtra, India

PRAGJYOTISH COLLEGE Meet BHARALUMUKH GUWAHATI-9

2019

Wallah.09



# **CONTENTS**

| DISCLAIMER                                                                | 5    |
|---------------------------------------------------------------------------|------|
| ACKNOWLEDGEMENT                                                           | 6    |
| WHY ENERGY AUDIT?                                                         | 7    |
| ENERGY AUDIT TEAM                                                         | 8    |
| EXECUTIVE SUMMARY                                                         | 9    |
| 1. INTRODUCTION                                                           | . 15 |
| 1.1 Objective of Audit                                                    | . 15 |
| 1.2 Scope of Work                                                         | . 15 |
| 1.3 Approach and Methodology                                              | . 17 |
| 1.4 Work Schedule:                                                        | . 18 |
| 1.5 About PPSES                                                           | . 19 |
| 2. ENERGY DETAILS                                                         | . 20 |
| 2.1 Energy Details                                                        | . 20 |
| 2.2 Major Energy use and areas                                            | . 21 |
| 2.3 Electricity Bill Details                                              | . 22 |
| 2.3.1 Energy Consumption                                                  | . 22 |
| 2.3.2 Power Factor Trend                                                  | . 23 |
| 2.3.3 Maximum Demand                                                      | . 24 |
| 3. ENERGY AND UTILITY SYSTEM DESCRIPTIONS                                 | . 25 |
| 3.1 List of Utilities                                                     | . 25 |
| 3.2. Electrical Substation                                                | . 25 |
| 3.3 List of Water Pump set                                                | . 25 |
| 3.4 Street Lights:                                                        | . 26 |
| 3.5 Electrical Distribution Network                                       | . 26 |
| 4. DETAILED ENERGY AUDIT                                                  | . 27 |
| 4.1 Performance assessment of Split AC                                    | . 27 |
| 4.2 DG set                                                                | . 29 |
| 5. ENERGY CONSERVATION MEASURES & RECOMMENDATIONS                         | . 30 |
| ECM 1: Replacement of Conventional Lights (CFL) with LED Lights           | . 30 |
| ECM 2: Replacement of Conventional Lights (Tube Light) with LED Lights    | . 32 |
| ECM 3: Replacement of Conventional Fans (70 W) with Super-Efficient Fans  | . 34 |
| ECM 4: Replacement of Conventional Fans (100 W) with Super-Efficient Fans | . 36 |
| ECM 5: Optimize the Temperature Setting of ACs                            | . 38 |
| 6. PRIORITIZATION OF ENERGY CONSERVATION MEASURES                         | . 40 |
| 7. LIST OF INSTRUMENTS                                                    | . 41 |



#### Energy Audit Report of Pragjyotish College, Guwahati

| 8. | SOLAR ANNEXURE                           | . 45 |
|----|------------------------------------------|------|
| 1) | Introduction                             | . 45 |
| 2) | Benefits of Solar Energy                 | . 45 |
| 3) | Objective                                | . 46 |
| 4) | Design Assumptions                       | . 46 |
| 5) | System Description                       | . 46 |
| 5  | 1 Solar PV Module (Electrical Features)  | . 47 |
| 5  | .2 Solar PV Module (Mechanical Features) | . 47 |
| 5  | .3 Module Mounting Structure             | . 47 |
| 5  | .4 Junction Box                          | . 48 |
| 5  | .5 String Inverter                       | . 48 |
| 5  | .6 AC /DC Cables                         | . 48 |
| 5  | 7 Grounding and Lighting Protection      | . 49 |
| 6) | Solar PV Location                        | . 50 |
| 7) | Capacity Evaluation                      | . 51 |
| 8) | Budgetary Estimation of the Project      | . 52 |
| 9. | SITE PHOTOGRAPHS                         | . 53 |



# List of Figures

| Figure 1- Connected load in Kw      | 21 |
|-------------------------------------|----|
| Figure 2 Monthly Energy Consumption |    |
| Figure 3 Power Factor Trend         |    |
| Figure 4 Maximum Demand             |    |
| Figure 5 Transformer                |    |
| Figure 6 Street light               |    |
| Figure 7 Distribution panel         |    |
| Figure 8 Air Conditioner            |    |
| Figure 9 Diesel Generator Set       |    |
| Figure 10 CFL Lights                | 31 |
| Figure 11 Tube Lights               |    |
| Figure 12 Ceiling Fan               |    |
| Figure 13 Ceiling Fan               |    |
| Figure 14 Air Conditioner           |    |

# List of Tables

| Table 1- Block list                 |  |
|-------------------------------------|--|
| Table 2- Monthly Energy Consumption |  |
| Table 3- List of Pump set           |  |



# DISCLAIMER

This report was prepared for Pragjyotish College, Guwahati. The information herein is confidential and shall not be divulged to a third party without the prior written permission of PPS Energy Solutions Pvt Ltd, Pune, its affiliates and subsidiaries, including PPS Energy Solutions Pvt Ltd, and their respective officers, employees or agents, individually and collectively, referred to in this clause as 'PPSES'.

PPS Energy assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant PPSES entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.

All the calculations for energy savings and recommendations to achieve these savings given in this report is fully based on the data shared by the college with PPSES.



# ACKNOWLEDGEMENT

We express our sincere gratitude to the authorities of Pragjyotish College, Guwahati for entrusting and offering the opportunity of energy performance assessment assignment.

• Dr. Manoj Kumar Mahanta - Principal

We are thankful to Pragjyotish College Guwahati for their positive support in undertaking the task of system mapping and energy efficiency assessment of all electrical system, air conditioners, utilities and other equipment. The field studies would not have been completed on time without their interaction and guidance. We are grateful to their cooperation during field studies and providing necessary data for the study.

We are also thankful to all field staff and agencies working with whom we interacted during the field studies for their wholehearted support in undertaking measurements and eagerness to assess the system / equipment performance and saving potential. Also thankful to all concerned staff interacted during the conduct of this exercise for completing official documentations.



# WHY ENERGY AUDIT?

An energy audit determines the amount of energy consumption affiliated with a building and the potential savings associated with that energy consumption. Additionally, an energy audit is designed to understand the specific conditions that are impacting the performance and comfort in your facility to maximize the overall impact of energy-focused building improvements.

An energy audit is a systematic review of the energy consuming installations in a building or premises to ensure that energy is being used sensibly and efficiently. An energy audit usually commences with the collection and analysis of all information that may affect the energy consumption of the building or premises, then follows with reviewing and analyzing the condition and performance of various building services installations and building management, with an aim at identifying areas of inefficiency and suggesting means for improvement.

Through implementation of the suggested improvement measures, building owners can get the immediate benefit for paying less for energy bills. On the other hand, lowering of energy consumption in buildings will lead to the chain effect that less fossil fuel will be burnt for electricity generation by the power supply companies and relatively less pollutants and greenhouse gases will be introduced into the atmosphere, thus contributing to conserve the environment and to enhance sustainable development.

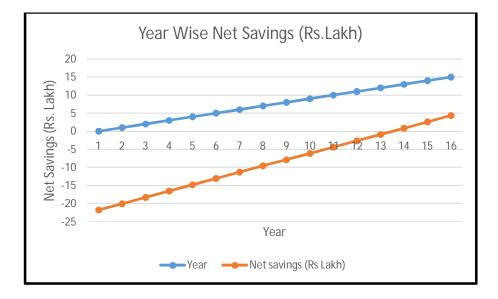


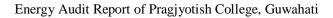
# ENERGY AUDIT TEAM

The team members of PPSES:

| Name                     | Role                                                            | Field of expertise                                                                                                                                                                                                                                                                                                             |
|--------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dr. Ravi G. Deshmukh     | ECM verification,<br>Report<br>verification and<br>presentation | Accredited Energy Auditor, Ph.D., M tech, MBA<br>(Power), Graduate E&TC Engineer with over 20<br>years of experience in Energy Management,<br>Management of Power System, Power<br>Exchange Operations, Power Trading and<br>Analysis, Electrical Automation. Has worked as<br>Expert in Iron & Steel sector and Energy sector |
| Mr. Nilesh S. Saraf      | Project<br>Coordinator                                          | Graduate Engineer with over 18 years of<br>experience in Project Coordination. Field<br>experience in Renewable Energy Projects,<br>Energy Efficiency Assessment.                                                                                                                                                              |
| Mr. Mahesh Khode         | Energy Analyst                                                  | Electrical engineer with 5 years of experience in<br>Energy Efficiency Assessment, Electrical<br>distribution system, Design, Power assets<br>Evaluation and Project Management, resource<br>management.                                                                                                                       |
| Mrs. Utkarsha<br>Bharate | Data tabulation<br>and analysis &<br>report<br>preparation      | Graduate in Electrical & Electronics Engineering<br>with 3 years of experience in Energy & Power<br>projects                                                                                                                                                                                                                   |




# EXECUTIVE SUMMARY


## Summary of recommended Energy Conservation Measures:

| Sr.<br>No | Equipment<br>Name      | ECM Details                                                                          | Investment<br>(Rs. In<br>Lacs ) | Savings<br>(kWh/<br>year) | Carbon<br>credit<br>(Tons<br>of Co2) | Saving<br>(Rs. In<br>Lacs<br>/Year<br>) | Payback<br>(Years) |
|-----------|------------------------|--------------------------------------------------------------------------------------|---------------------------------|---------------------------|--------------------------------------|-----------------------------------------|--------------------|
| 1         | Air<br>Conditioner     | Optimize the Air<br>Conditioner<br>temperature<br>setting to 23-25<br>degree Celsius | 0                               | 1687                      | 1.5                                  | 0.11                                    | 0                  |
| 2         | Ceiling Fan<br>(100 w) | Replacement of<br>existing fans with<br>energy efficient<br>Super fans               | 0.68                            | 1146.6                    | 0.97                                 | 0.08                                    | 8.76               |
| 3         | CFL                    | Replacement of<br>conventional<br>lights (CFL) with<br>12w LEDs                      | 0.26                            | 427.68                    | 0.36                                 | 0.03                                    | 8.87               |
| 4         | Tube Light             | Replacement of<br>conventional Tube<br>light with 20w<br>LEDs                        | 6.81                            | 9820.8                    | 8.35                                 | 0.66                                    | 10.27              |
| 5         | Ceiling Fan<br>(70 w)  | Replacement of<br>existing fans with<br>energy efficient<br>Super fans               | 14.04                           | 12789                     | 10.87                                | 0.86                                    | 16.27              |
|           | TC                     | TAL                                                                                  | 21.79                           | 25871.08                  | 22.05                                | 1.74                                    | 12.5               |



| Year | Investment<br>(Rs. In Lacs ) | Saving (Rs. In<br>Lacs /Year ) | Cum Savings(Rs<br>Lakh) | Net savings<br>(Rs Lakh) |
|------|------------------------------|--------------------------------|-------------------------|--------------------------|
| 0    | -22                          | 0                              | 0                       | -22                      |
| 1    | 0                            | 2                              | 2                       | -20                      |
| 2    | 0                            | 2                              | 3                       | -18                      |
| 3    | 0                            | 2                              | 5                       | -17                      |
| 4    | 0                            | 2                              | 7                       | -15                      |
| 5    | 0                            | 2                              | 9                       | -13                      |
| 6    | 0                            | 2                              | 10                      | -11                      |
| 7    | 0                            | 2                              | 12                      | -10                      |
| 8    | 0                            | 2                              | 14                      | -8                       |
| 9    | 0                            | 2                              | 16                      | -6                       |
| 10   | 0                            | 2                              | 17                      | -4                       |
| 11   | 0                            | 2                              | 19                      | -3                       |
| 12   | 0                            | 2                              | 21                      | -1                       |
| 13   | 0                            | 2                              | 23                      | 1                        |
| 14   | 0                            | 2                              | 24                      | 3                        |
| 15   | 0                            | 2                              | 26                      | 4                        |







| Particulars    | Quantity | Energy In kW |
|----------------|----------|--------------|
| CFL 18W        | 99       | 1.78         |
| Tube Light 40W | 682      | 27.28        |
| LED 18W        | 354      | 6.37         |
| SL LED 15W     | 10       | 0.15         |
| Total          | 1,145    | 35.58        |

|     | Particulars            | Total Lighting<br>requirement | Lighting met<br>Through LED Bulb | Lighting met through<br>other type lamp |
|-----|------------------------|-------------------------------|----------------------------------|-----------------------------------------|
| (1) | Load in KW             | 35.58                         | 6.52                             | 29.06                                   |
| (A) | Percentage             | 100                           | 18.33                            | 81.67                                   |
| (D) | Energy in KWH per year | 32,026                        | 5,870                            | 26,156                                  |
| (B) | Percentage             | 100                           | 18.33                            | 81.67                                   |

#### **Energy Generated by Present Solar System**

| Particulars                                                       | Value    | Unit |
|-------------------------------------------------------------------|----------|------|
| A) 10 Solar Street Light with 40W panel each                      | 2,520    | kWh  |
| B) Stand Alone Solar Plant of 5 kW                                | 31,500   | kWh  |
| Total                                                             | 34,020   | kWh  |
| Present Annual electrical consumption of premises                 | 1,16,904 | kWh  |
| Renewable Energy to Conventional Energy Consumption               | 29.10    | %    |
| A Freezew Concreted by Pressent Color DV Conterns of Chreat Light |          |      |

#### A. Energy Generated by Present Solar PV System of Street Light:

| Particulars                                                        | Value       | Unit |
|--------------------------------------------------------------------|-------------|------|
| 10 Solar Street Light with 40W panel each                          | 0.4         | kW   |
| Electricity Generation for 0.4 kW plant                            | 1.4         | kWh  |
| Daily running hours per day for 10 Solar Street Light              | 6           | Hrs  |
| Total Working Hours in 300 Days per year for 10 Solar Street Light | 1,800       | Hrs  |
| Total Generation per Year for 10 Solar Street Light                | 2,520       | kWh  |
| Present Annual electrical consumption of premises                  | 1,16,904    | kWh  |
| Renewable Energy to Conventional Energy Consumption                | 2.16        | %    |
| B. Eporgy Congrated by Present Standalong Solar BV System at Libra | ny Ruilding |      |

**<u>B. Energy Generated by Present Standalone Solar PV System at Library Building:</u>** 

| Particulars                                             | Value    | Unit |
|---------------------------------------------------------|----------|------|
| Stand Alone Solar Plant                                 | 5        | kW   |
| Electricity Generation for 1 kW plant                   | 3.5      | kWh  |
| Daily running hours per day for 5 kW plant              | 6        | Hrs  |
| Total Working Hours in 300 Days per year for 5 kW plant | 1,800    | Hrs  |
| Total Generation per Year for 5 kW plant                | 31,500   | kWh  |
| Present Annual electrical consumption of premises       | 1,169,04 | kWh  |
| Renewable Energy to Conventional Energy Consumption     | 26.95    | %    |

**Note-** Above solar plant and solar street light Information mention in A and B point is as per the data provided by college vender and all the solar calculation made by us as per the information provided by college vender.



for

|   | Sr.<br>No. | Equipment<br>Name      | Observation                                                          | Recommendation                                                      | Time frame fo<br>Execution |
|---|------------|------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|
|   | 1          | AC setting             | Temperature<br>settings are very low                                 | Optimize the temperature<br>setting to 23-25 degree<br>Celsius      | 0.00 Years                 |
|   | 2          | Ceiling Fan<br>(100 w) | Fans are older and<br>without star rating.<br>Replace it on priority | Replacement of existing fans<br>with energy efficient Super<br>fans | 8.76 Years                 |
|   | 3          | CFL                    | College has installed<br>CFL lights of 18 W                          | Replacement of conventional<br>lights (CFL) with 12w LEDs<br>lights | 8.87 Years                 |
|   | 4          | Tube Light             | College has installed<br>Tube lights of 40 W                         | Replacement of conventional<br>Tube light with 20w LEDs<br>lights   | 10.27 Years                |
| 5 |            | Ceiling Fan            | Fans are older and                                                   | Replacement of existing fans with energy efficient Super            | 16.27 Years                |

#### **Observations and Recommendations:**

#### **Observations and Recommendations:**

(70 w)

Presently 100 kVA transformer is installed in college campus and it will extend to 315 kVA in upcoming time.

fans

- College has 125 kVA Diesel Generator set for uninterrupted power supply in case of supply failure from APDCL.
- > Open lid found in main panel box and need to be closed.

without star rating

- > Earthing should be taken through the panel instead of wall connection.
- > Fire extinguisher is present in campus area.
- > Rusted wiring found in some places which needs to be replaced.
- 10 number of solar LED Street lights of capacity 40W each panel and 15W LED's are available in the campus area, as per the Information provide by college.
- ➢ 5 kW solar panel Installed on library building with 325W panel capacity as per the Information provide by college.
- > The campus area is well facilitated with CCTVs for security purpose.
- Load unbalancing found during field visit in electrical distribution system of campus area and hence load needs to be balanced.
- > Distribution panel boxes need to be cleaned.
- For the safety purpose, fire extinguisher present in the campus area are insufficient hence, additional fire extinguishers need be made available for every floor of the buildings.



#### A Block (Geology or Main Building):

- > Distribution Box cover is missing in two places which should be covered.
- Two number of 1 kVA UPS systems found in Bad condition which are to be made operational.
- > Water is supplied from bore well to tank. Pump set has capacity of 1.5 HP.

#### B Block (opposite to Main Building):

- > New panel box will be installed in upcoming time.
- > Distribution Box cover found missing in three places and need to be covered.
- 31 number of fans need to be replaced on priority basis since they are very old and outdated.
- **<u>C. Block (Statistics Building)</u>**: All the equipment's are in good condition.

### D. Block (Zoology Building):

- > One number of 15 kVA UPS system found in operational condition.
- 10 kVA UPS system found in non-operational condition and need to be made operational.
- For the safety purpose single fire extinguisher is not sufficient for the building hence fire extinguisher should be made available for every floor of the building.
- Terrace having area of 22 m X 7 m (Length X Width). Which can be utilised for solar Installation in future.
- E. Block (Chemistry Building): All the equipment's are in good condition.
  - Terrace having area of 27 m X 18 m (Length X Width). Which can be utilised for solar Installation in future.
- F. Block (Commerce Building): All the equipment's are in good condition.
  - Terrace having area of 33 m X 16 m (Length X Width). Which can be utilised for solar Installation in future.
- **<u>G. Block (Art Building)</u>**: All the equipment's are in good condition.
- H. Block (Boys common Room): All the equipment's are in good condition.

#### I. Block (Gym Sub Room Building):

- > Rusted wiring found in some places in the building which should be replaced.
- > Distribution Box cover found missing in some places.

#### J. Block (Canteen Building):

- > Two number of refrigerators and one number of mixer available for cooking purpose.
- > All the equipment's are in good condition.



#### K. Block (Library Building):

- > 5 kW solar plant is installed on the building.
- > Most of the LED lights present in the building are of 12 W.
- > 5 kVA UPS system with 12 V and 65 Ah battery set is present.

#### L. Block (Auditorium Building):

- > One number of old AC (zero rating) of 1.5 TR is present in building.
- The Auditorium hall is used only during college function, as electricity is supplied by only DG set.

#### M. Block (NCC Building):

Three number of fans need to be replaced on priority basis since they are very old and outdated.

#### N. Block (Boys toilet Building):

All the equipment's are in good condition.

#### O. Block (Girls hostel Building):

Water is supplied from bore well to tank. Pump set has capacity of 1.5 HP. Every room has one number of 3W LED light.



### **1. INTRODUCTION**

Pragjyotish College was established on 1<sup>st</sup> September 1954, seven years after Independence, it became a beacon of learning and a symbol of aspirations for the common people of Assam, rating to build a new nation. Pandit Tirthanath Sarma, eminent scholar and litterateur, responded to and actively participated in the nation building by taking charge as the founder principal of Pragjyotish College.

From its modest inception as an arts college, Pragjyotish College has now developed into one of the premier institutions of higher education in Guwahati. At present, it is a wellknown full-fledged degree college imparting higher education in Arts, Science and Commerce streams. The college has also two post graduate department's viz. Assamese and Tourism Management. It is affiliated to Guwahati University and registered under 2(F) and 12(B) of the University Grants Commission Act, 1956. The College has the distinction of being assessed and accredited twice by the NAAC in 2003 and 2010 respectively. Preparations are afoot for undertaking the third-cycle of NAAC accreditation

### 1.1 Objective of Audit

The overall objective of the assignment is to quantify energy saving in existing system and achieve reduction in energy consumption pattern.

Hence the detail objectives are as under,

- To carry out the energy consumption
- To evaluate the performance of the equipment
- To find out the energy saving opportunities
- To quantify the total energy savings
- To find out the ways to achieve energy efficiency

### 1.2 Scope of Work

Following is the scope of work for this assignment,

#### a) Field Study

The field study should incorporate technical data collection. Physical verification of connected load, preparation of single line diagram of building & campus electrical



distribution system & analysis of readings obtained from site measurement with the standard consumption.

- Pragjyotish College Guwahati is a H. T. consumer of APDCL & has a single meter. University had created energy meter at maximum building points but it is to be checked for accuracy & faulty.
- 2) Carry out meter wise, building wise & department wise load survey of all existing Electrical installation in Building with details and submit the data with remarks and observation and with over all meter wise remarks and observations.
- 3) Submit the consolidated meter wise building wise department wise total existing load classifying as lighting/ power/ AC /load with remarks and observation.
- 4) Carry out the meter point wise Electrical para-meter measurements
- 5) Power parameter measurement data logging should be carried out building wise according to utilization pattern.

#### b) <u>Report</u>

- 1) Submit tabulated field study data as per formats with remarks & observations.
- 2) Draft Report: The detail draft report giving the recommendation for energy saving shall be prepared. The report shall contain overview of existing conditions, parameters measured analysis methodology other details of equipment's suggestions for improvement to operating and maintenance for the activities to be carried out without or with major investments. The payback period calculations shall be given for the activities to be completed with investment.
- 3) The draft report should be submitted in standard format as per the guide lines of Energy Efficiency. Also it should consist of saving potentials, skills requirements, time frame for execution, investment cost, payback period, observation and recommendation.
- 4) Recommendation should incorporate short term, medium term and long terms implementation system with and without investment. The contractor should highlight the metering point / buildings / department with larger saving potential in the draft report. Incorporate updated technology in energy saving in Building in the draft report.

The scope of work given above is common for all the areas. The detail study as per the scope given shall be carried out in each area. The draft report should be prepared as mentioned above and same shall be discussed with the deputed authority of the Pragjyotish College Guwahati.

# 1.3 Approach and Methodology

- 1. Understanding the Scope of Work and Resource Planning
- 2. Identification of Key Personnel for the assignment/ project
- 3. Structured Organization Matrix
- 4. Steps in preparing and implementing energy audit assignment.
  - a) Discussions with key facility personnel
  - b) Site visits and conducting "walk-through audit"
  - c) Preliminary Data Collection through questionnaire before audit team's site visit
  - d) Steps for conducting the detailed audit
    - Plan the activities of site data collection in coordination with the facility in charge.
    - Study the existing operations involving energy consumption
    - Collect and collate the energy consumption data with respect to electricity consumption
    - Conduct performance tests to assess the efficiency of the system equipment/ electricity distribution, lighting, and identify energy losses.
    - Discuss with facility operation / maintenance personnel about identified energy losses.
- 5. List proposed efficiency measures
  - Develop a set of potential efficiency improvement proposals
  - Baseline parameters
  - Data presentation
  - System mapping
  - List of potential Energy Savings proposals with cost benefit analysis.
  - Review of current operation & maintenance practices



- 6. Preparation of the Draft Energy Audit Report
- 7. Preparation of final Energy Audit Report after discussion with concern persons

### 1.4 Work Schedule:

- Field study- The field study that includes technical data collection, physical verification
  of connected load, and measurement of various energy intensive equipment's will be
  carried during office hrs. If it is required to extend the working hrs. Beyond the abovespecified timings, PPSES will take permission of the concerned authority prior to
  commencement of work on that particular day. Pragjyotish College Guwahati has
  authorized person or the person nominated by authority should accompany PPSES
  person while carrying out the field study.
- Working days: The activities to be carried out in Pragjyotish College Guwahati premises like field study, report presentation, energy conservation measures discussions will be done during working days as per Pragjyotish College Guwahati rules.
- If it is required to work on non-working days, PPSES will take permission of the concerned authority prior to commencement of work on that particular day.
- Activities like data tabulation, energy conservation measures preparation, report preparation, single line diagram preparation will be done as per PPSES working hours and working days.
- Time Schedule:

| Sr. No. | Activity                                  | Start Date | End Date  |
|---------|-------------------------------------------|------------|-----------|
| 1       | Field study as mentioned in scope of work | 11-Sep-19  | 14-Sep-19 |
| 2       | Submission of final report                | 17-Dec-19  | 26-Dec-19 |



### 1.5 About PPSES

M/s. PPS Energy Solutions Pvt Ltd (PPSES) is an ambitious company, established by enterprising engineering professionals in the year 2004. The company offers services pertaining to Energy and Engineering to clients across the globe.

Our team is based in Pune, a city known for its Software and Engineering talent in India. We are a rapidly growing company with a team of about 100 people which includes highly trained and experienced Techno-Managers, Analysts, and Engineers & Detailers.

We are presently working in India (Maharashtra, Madhya Pradesh, Gujarat, Andhra Pradesh, Delhi, Orissa, Chhattisgarh, Bihar, Andhra Pradesh, Telangana, Assam, Rajasthan and Jharkhand) and Abroad (Bahrain, Stanford, Laos)

We provide services for,

- Energy Audit, Management and System Evaluations
- Power Distribution System Design, Evaluations and Monitoring
- MEP Design and Project management
- Research and Training
- Services for Solar Installation



### 2. ENERGY DETAILS

### 2.1 Energy Details

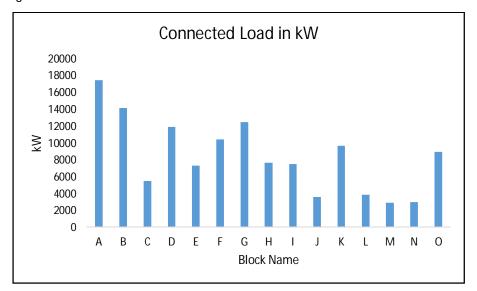
The electricity supply for Pragjyotish College is provided by Assam Power Distribution Company Limited. The energy consumed by Pragjyotish College falls under HT bulk Category. The facility also has 1 DG sets of 125 KVA. The DG set is mainly used for power failure from APDCL.

| Sr. No | DG details | Name of the building |
|--------|------------|----------------------|
| 1      | 125 KVA    | College Building     |

The energy efficiency assessment was conducted for the load connected to the mains supply.

Consumer details:

| Name of Consumer                  | Tariff Category | Consumer Account No. |
|-----------------------------------|-----------------|----------------------|
| The Principal Pragjyotish college | HT Bulk supply  | 63000001300          |


Mainly energy is used on this facility for the following purposes:

- 1) Lightings load
- 2) Air conditioners
- 3) Fan



## 2.2 Major Energy use and areas

Based on data collected from all buildings present in campus. The connected load in kW of all buildings is shown below:



#### Figure 1- Connected load in Kw

Based on above it is clear that followings buildings have highest potential for energy savings.

#### Table 1- Block list

| Name of the Building               |
|------------------------------------|
| A Block(Geology or Main Building)  |
| B Block(opposite to Main Building) |
| C Block(Statistics Building)       |
| D Block(Zoology Building)          |
| E Block(Chemistry Building)        |
| F Block(Commerce Building)         |
| G Block(Art Building)              |
| H Block(Boys common Room)          |
| I Block(Gym Sub Room Building)     |
| J Block(Canteen Building)          |
| K Block(Library Building)          |
| L Block(Auditorium Building)       |
| M Block(NCC Building)              |
| N Block(Boys toilet Building)      |
| O Block(Girls hostel Building)     |



### 2.3 Electricity Bill Details

Energy meter details:

| Name of Consumer                  | Tariff Category | Consumer Account No. |
|-----------------------------------|-----------------|----------------------|
| The Principal Pragjyotish college | HT Bulk supply  | 63000001300          |

#### Table 2- Monthly Energy Consumption

| Month  | kWh   | PF   | Maximum<br>Demand (kVA) | Billed Demand<br>(kVA) | Total Current<br>Bill (Rs) |
|--------|-------|------|-------------------------|------------------------|----------------------------|
| Dec-18 | 6048  | 0.97 | 21.6                    | 94.11                  | 56264                      |
| Jan-19 | 5023  | 0.97 | 20.7                    | 94.11                  | 48945                      |
| Feb-19 | 6585  | 0.98 | 28.8                    | 94.11                  | 46149                      |
| Mar-19 | 8922  | 0.99 | 40.2                    | 94.11                  | 76787                      |
| Apr-19 | 7325  | 0.98 | 45.6                    | 94.11                  | 65726                      |
| May-19 | 10139 | 0.99 | 50.7                    | 94.11                  | 84944                      |
| Jun-19 | 13188 | 0.99 | 73.5                    | 94.11                  | 106126                     |
| Jul-19 | 9468  | 0.98 | 30.6                    | 94.11                  | 80185                      |
| Aug-19 | 15999 | 0.99 | 89.7                    | 94.11                  | 126474                     |
| Sep-19 | 16781 | 0.99 | 84                      | 94.11                  | 131597                     |
| Oct-19 | 9945  | 0.98 | 63.3                    | 94.11                  | 83562                      |
| Nov-19 | 7481  | 0.98 | 47.4                    | 94.11                  | 66071                      |

### 2.3.1 Energy Consumption

- Energy consumption of college building is from 16781 kWh to 5023 kWh.
- Energy consumption in the month of Sep-19 has been high. It was observed that the AC load was high during the Sep-19.



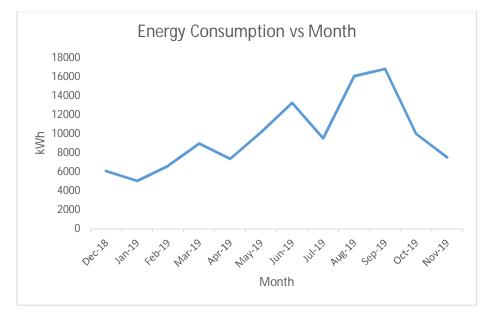



Figure 2 Monthly Energy Consumption

### 2.3.2 Power Factor Trend

Power factor is in the range of 0.97 to 0.99. Incentives are well received by college from APDCL.

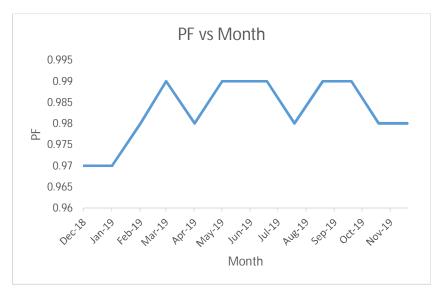



Figure 3 Power Factor Trend



# 2.3.3 Maximum Demand.

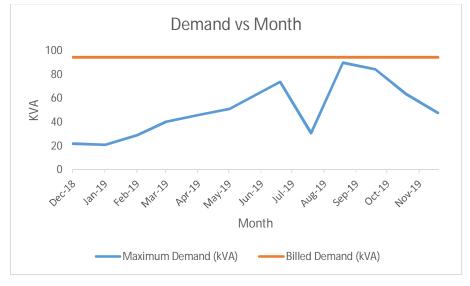



Figure 4 Maximum Demand



## 3. ENERGY AND UTILITY SYSTEM DESCRIPTIONS

### 3.1 List of Utilities

Pragjyotish College has following energy and utility systems.

- > Electrical substation The facility has one transformers of 100 KVA, 11kV/415V each.
- > 2 Water Pumps of 1.5 HP across the facility at different locations.
- Street lights
- Electrical distribution network
- > DG sets 1 DG sets of 125 KVA

### 3.2. Electrical Substation

> Pragjyotish College has one transformers of 100 KVA, 11kV/415V each.



Figure 5 Transformer

## 3.3 List of Water Pump set

Table 3- List of Pump set

| Sr. No. | Location       | Connected Load (HP) | kW   | Remark      |
|---------|----------------|---------------------|------|-------------|
| 1       | Collogo Compus | 1.5                 | 1.11 | Submersible |
| 2       | College Campus | 1.5                 | 1.11 | Submersible |



### 3.4 Street Lights:

Pragjyotish College has total 10 nos. of lighting poles are spread across the campus area. Solar street light 3W light LED Light



Figure 6 Street light

### 3.5 Electrical Distribution Network

Pragjyotish College has total 15 nos. of buildings. Electrical supply from transformer is given to the fifteen nos. building where from it is distributed across the facility.



Figure 7 Distribution panel



### 4. DETAILED ENERGY AUDIT

### 4.1 Performance assessment of Split AC

Cooling equipment systems used in small commercial buildings often express cooling system efficiency in terms of the Energy Efficiency Ratio - EER - For room air conditioners the commonly used efficiency ratio is the – *EER - Energy Efficiency Ratio:* 

EER is a measure of how efficient a cooling system operates in steady state (over time) when the outdoor temperature is at a specific level (outdoor conditions commonly used are 95°F). The higher EER, the more energy efficient system is.

 $EERinWatt = \frac{\text{Refigeration effect in watts}}{\text{Input power in watts}}$ 

 $EER in Watt = \frac{\text{mass flow rate} * (\text{Enthalpy in} - \text{Enthalpy out}) * 1000/(4.18 * 860)}{\text{Input power in watts}}$ 

#### **Parameter** Value Unit Air flow in (m/s) 4 m/s m2 Area 0.1 Air density 1.17 kg/m3 Dry Bulb temperature at Inlet 26 °C 21 °C Wet bulb temperature at Inlet Dry Bulb temperature at Outlet 21 °C Wet bulb temperature at Outlet °C 18 kJ/kg Enthalpy In 60.7 Enthalpy out 50.8 kJ/kg Measured current of the compressor 8 А Energy demand of the compressor 1.656 kW Watt refrigeration effect 4.64 kW **Energy Efficiency Ratio** 2.8 -

#### 1.5 TR non star rated AC's

#### 1.5 TR 5 star rated AC's:

| Parameter                      | Value | Unit  |
|--------------------------------|-------|-------|
| Air flow in (m/s)              | 4     | m/s   |
| Area                           | 0.1   | m2    |
| Air density                    | 1.17  | kg/m3 |
| Dry Bulb temperature at Inlet  | 26    | °C    |
| Wet bulb temperature at Inlet  | 21    | °C    |
| Dry Bulb temperature at Outlet | 21    | °C    |
| Wet bulb temperature at Outlet | 18    | °C    |
| Enthalpy In                    | 60.7  | kJ/kg |



| Parameter                          | Value | Unit  |
|------------------------------------|-------|-------|
| Enthalpy out                       | 50.8  | kJ/kg |
| Measured current of the compressor | 6     | A     |
| Energy demand of the compressor    | 1.242 | kW    |
| Watt refrigeration effect          | 4.64  | kW    |
| Energy Efficiency Ratio            | 3.7   | -     |

#### 2 TR non star rated AC's

| Parameter                          | Value | Unit  |
|------------------------------------|-------|-------|
| Air flow in (m/s)                  | 4     | m/s   |
| Area                               | 0.14  | m2    |
| Air density                        | 1.17  | kg/m3 |
| Dry Bulb temperature at Inlet      | 26    | °C    |
| Wet bulb temperature at Inlet      | 21    | °C    |
| Dry Bulb temperature at Outlet     | 21    | °C    |
| Wet bulb temperature at Outlet     | 18    | °C    |
| Enthalpy In                        | 60.7  | kJ/kg |
| Enthalpy out                       | 50.8  | kJ/kg |
| Measured current of the compressor | 11    | А     |
| Energy demand of the compressor    | 2.277 | kW    |
| Watt refrigeration effect          | 6.49  | kW    |
| Energy Efficiency Ratio            | 2.8   | -     |

## 2 TR 5 star rated AC's

| Parameter                          | Value | Unit  |
|------------------------------------|-------|-------|
| Air flow in (m/s)                  | 4     | m/s   |
| Area                               | 0.14  | m2    |
| Air density                        | 1.17  | kg/m3 |
| Dry Bulb temperature at Inlet      | 26    | °C    |
| Wet bulb temperature at Inlet      | 21    | °C    |
| Dry Bulb temperature at Outlet     | 21    | °C    |
| Wet bulb temperature at Outlet     | 18    | °C    |
| Enthalpy In                        | 60.7  | kJ/kg |
| Enthalpy out                       | 50.8  | kJ/kg |
| Measured current of the compressor | 9     | A     |
| Energy demand of the compressor    | 1.863 | kW    |
| Watt refrigeration effect          | 6.49  | kW    |
| Energy Efficiency Ratio            | 3.4   | -     |



Figure 8 Air Conditioner



## 4.2 DG set

DG sets are used mainly in case of power failure and shutdown maintenance incidents. DG set performance assessment was carried out at 125 KVA DG set.



Figure 9 Diesel Generator Set



## 5. ENERGY CONSERVATION MEASURES & RECOMMENDATIONS

# ECM 1: Replacement of Conventional Lights (CFL) with LED Lights

| Name                      | Replacement of CFL light 18 W with 12 W LEDs                                 |
|---------------------------|------------------------------------------------------------------------------|
| Location                  | All the buildings                                                            |
| Estimated Annual Savings  | 427.68 kWh/year, 0.03 Lakhs INR/year                                         |
| Estimated investment Cost | 0.26 Lakh                                                                    |
| Estimated Payback         | 8.87 Years                                                                   |
| Environmental Benefits.   | Reduced $CO_2$ emissions from less electricity used @ 0.36 $tCO_2e$ per year |

#### **Observations:**

The CFL lights are used for lighting purpose. Overhanging wires were observed.

#### **Recommendations:**

The existing lighting fittings could be replaced with suitable LEDs. LEDs have better efficiency per watt as well as they have much larger lifespan than TFLs.

| Type<br>of<br>Fitting | Wattage | Qty | Proposed LED W | Existing KW | Proposed KW | Saved kW |
|-----------------------|---------|-----|----------------|-------------|-------------|----------|
| CFL                   | 18      | 99  | 12             | 1.78        | 1.19        | 0.59     |
| TOTAL                 | 18      | 99  | 12             | 1.78        | 1.19        | 0.59     |

| Energy Saving Calculation                                           |          |       |  |  |
|---------------------------------------------------------------------|----------|-------|--|--|
| Particular                                                          | Unit     | Value |  |  |
| Power consumption of existing 18W CFL Lights                        | KW       | 1.78  |  |  |
| Power consumption of 12W LED light                                  | KW       | 1.19  |  |  |
| Average power saving after replacement with LED light               | KW       | 0.59  |  |  |
| Replacement of conventional lights (CFL) of 18 W with 12W LED Light | Nos      | 99    |  |  |
| Average working hour per day                                        | hrs      | 3     |  |  |
| No. of working days in a year                                       | Days     | 240   |  |  |
| Cost Benefit Calculation                                            |          |       |  |  |
| Annual Energy Saving potential                                      | kWh      | 428   |  |  |
| Electricity tariff                                                  | Rs/unit  | 6.75  |  |  |
| Annual Cost Saving                                                  | Rs. Lakh | 0.03  |  |  |
| Total investment cost                                               | Rs. Lakh | 0.26  |  |  |
| Annual Saving                                                       | Rs. Lakh | 0.03  |  |  |
| Simple Payback Period                                               | Years    | 8.9   |  |  |





Figure 10 CFL Lights



# ECM 2: Replacement of Conventional Lights (Tube Light) with LED Lights

| Name                         | Replacement of Conventional Tube Lights with 20W LED Lights                 |  |  |
|------------------------------|-----------------------------------------------------------------------------|--|--|
| Location                     | All the buildings                                                           |  |  |
| Estimated Annual<br>Savings  | 9821 kWh/year, 0.66 Lakhs INR/year                                          |  |  |
| Estimated investment<br>Cost | 6.81 Lakh                                                                   |  |  |
| Estimated Payback            | 10.3 Years                                                                  |  |  |
| Environmental Benefits.      | Reduced $CO_2$ emissions from less electricity used @ 8 t $CO_2$ e per year |  |  |





Figure 11 Tube Lights



#### **Observations:**

The Tube lights are used for lighting purpose. Overhanging wires were observed.

#### **Recommendations:**

The existing lighting fittings could be replaced with suitable LEDs. LEDs have better efficiency per watt as well as they have much larger lifespan than TFLs.

| Type of<br>Fitting | Wattage | Qty | Proposed LED<br>W | Existing KW | Proposed<br>KW | Saved<br>kW |
|--------------------|---------|-----|-------------------|-------------|----------------|-------------|
| Tube light         | 40      | 682 | 20                | 27.28       | 13.64          | 13.64       |
| TOTAL              | 40      | 682 | 20                | 27.28       | 13.64          | 13.64       |

| Energy Saving Calculation                                      |          |       |  |  |
|----------------------------------------------------------------|----------|-------|--|--|
| Particular                                                     | Unit     | Value |  |  |
| Power consumption of 40w tube lights                           | KW       | 27.28 |  |  |
| Power consumption of 20w LED lights                            | KW       | 13.64 |  |  |
| Average power saving after replacement with LED Street light   | KW       | 13.64 |  |  |
| Replacement of conventional lights of 40 W with 20w LED lights | Nos      | 682   |  |  |
| Average working hour per day                                   | hrs      | 3     |  |  |
| No. of working days in a year                                  | Days     | 240   |  |  |
| Cost Benefit Calculation                                       |          |       |  |  |
| Annual Energy Saving potential                                 | kWh      | 9821  |  |  |
| Electricity tariff                                             | Rs/unit  | 6.75  |  |  |
| Annual Cost Saving                                             | Rs. Lakh | 0.66  |  |  |
| Total investment cost                                          | Rs. Lakh | 6.81  |  |  |
| Annual Saving                                                  | Rs. Lakh | 0.66  |  |  |
| Simple Payback Period                                          | Years    | 10.3  |  |  |



# ECM 3: Replacement of Conventional Fans (70 W) with Super-Efficient Fans

| Name                         | Replacement of existing old (without star rating) fans with 5 star rated energy efficient fans |
|------------------------------|------------------------------------------------------------------------------------------------|
| Location                     | Almost all locations where old fans exist                                                      |
| Estimated Annual<br>Savings  | 12789 kWh/year, 0.86 Lakh INR/year                                                             |
| Estimated investment<br>Cost | 14.04 Lakhs                                                                                    |
| Estimated Payback            | 16.27 Years                                                                                    |
| Environmental                | Reduced CO <sub>2</sub> emissions from less electricity used @ 10.87 tCO <sub>2</sub> e        |
| Benefits.                    | per year                                                                                       |



Figure 12 Ceiling Fan

#### **Observations:**

Maximum fans are 70 W of old type without star rated.

#### **Recommendations:**

Super Fan is one of the latest Super-Efficient Ceiling fan in the market. This fan has a Brushless DC electronic motor that is super-efficient. The fan does not need a regulator and works with a remote control without remote as well. It can also work by toggling the switch on switchboard the same number of times as the desired speed. There is a LED at the centre of the fan that blinks and shows the fan speed when it is changed. Although this fan is a little different from other fans, the installation was quite easy and straightforward. Hence, it is



recommended to replace existing all without star rated fans with new 5 star rated energy efficient fans (Super fans).

#### **Energy Saving Calculations:**

| Type of Fitting | Wattage | Qty | Proposed<br>W | Existing<br>KW | Proposed<br>KW | Saved kW |
|-----------------|---------|-----|---------------|----------------|----------------|----------|
| Ceiling Fan     | 70      | 725 | 35            | 50.75          | 25.38          | 25.37    |
| TOTAL           | 70      | 725 | 35            | 50.75          | 25.38          | 25.37    |

| Particular                                                | Unit        | value |
|-----------------------------------------------------------|-------------|-------|
| Total Energy consumption of existing Fans                 | kW          | 36540 |
| Total Energy consumption of proposed Fans                 | kW          | 35    |
| Average power saving after replacement with proposed fans | kW          | 18270 |
| Operating hrs/year                                        | Hrs/year    | 720   |
| Diversity factor                                          | %           | 70%   |
| Annual Saving                                             | kWh/year    | 12789 |
| Unit rate                                                 | Rs/kWh      | 6.75  |
| Annual Saving                                             | Rs. In Lakh | 0.86  |



#### ECM 4: Replacement of Conventional Fans (100 W) with Super-Efficient Fans

| Name                      | Replacement of existing old (without star rating) fans with 5 star rated energy efficient fans |
|---------------------------|------------------------------------------------------------------------------------------------|
| Location                  | College building                                                                               |
| Estimated Annual Savings  | 1146.60 kWh/year, 0.08 Lakh INR/year                                                           |
| Estimated investment Cost | 0.68 Lakhs                                                                                     |
| Estimated Payback         | 8.76 Years                                                                                     |
| Environmental Benefits.   | Reduced $CO_2$ emissions from less electricity used @ 0.97 $tCO_2e$ per year                   |



Figure 13 Ceiling Fan

#### **Observations:**

Maximum fans are 100 W of old type without star rated. On priority basis Change 100 W fans.



#### Recommendations:

Super Fan is one of the latest Super-Efficient Ceiling fan in the market. This fan has a Brushless DC electronic motor that is super-efficient. The fan does not need a regulator and works with a remote control without remote as well. It can also work by toggling the switch on switchboard the same number of times as the desired speed. There is a LED at the centre of the fan that blinks and shows the fan speed when it is changed. Although this fan is a little different from other fans, the installation was quite easy and straightforward. Hence, it is recommended to replace existing all without star rated fans with new 5 star rated energy efficient fans (Super fans).

#### Energy Saving Calculations:

| Type of<br>Fitting | Wattage | Qty | Proposed W | Existing KW | Proposed<br>KW | Saved kW |
|--------------------|---------|-----|------------|-------------|----------------|----------|
| Ceiling Fan        | 100     | 35  | 35         | 3.5         | 1.22           | 2.28     |
| TOTAL              | 100     | 35  | 35         | 3.5         | 1.22           | 2.28     |

| Particular                                                | Unit        | value |
|-----------------------------------------------------------|-------------|-------|
| Total Energy consumption of existing Fans                 | kW          | 2520  |
| Total Energy consumption of proposed Fans                 | kW          | 35    |
| Average power saving after replacement with proposed fans | kW          | 882   |
| Operating hrs/year                                        | Hrs/year    | 720   |
| Diversity factor                                          | %           | 70%   |
| Annual Saving                                             | kWh/year    | 1147  |
| Unit rate                                                 | Rs/kWh      | 6.75  |
| Annual Saving                                             | Rs. In Lakh | 0.08  |



#### ECM 5: Optimize the Temperature Setting of ACs

| Name                      | Optimize the temperature setting of ACs                                     |
|---------------------------|-----------------------------------------------------------------------------|
| Location                  | All ACs                                                                     |
| Estimated Annual Savings  | 1687 kWh/year, 0.11 Lakh INR/year                                           |
| Estimated investment Cost | Nil                                                                         |
| Estimated Payback         | Nil                                                                         |
| Environmental Benefits    | Reduced $CO_2$ emissions from less electricity used @ 1.5 $tCO_2e$ per year |

#### **Observations:**

Temperature settings are very low

#### **Recommendations:**

During EEA study at facility it was observed that temperature settings of AC in office & meeting rooms were in the range of  $17^{\circ}$  C to  $22^{\circ}$  C.

It is known that a 1°C raise in AC temperature can help to save almost 3 % on power consumption (this can also be verified in BEE guideline: Chapter 4. HVAC and Refrigeration System).

The TR capacity of the same AC systems will also increase with the increase in evaporator temperature (AC set points), as given in Table below:

| Effect of variation in Evaporator Temperature on Compressor Power Consumption |                                   |                               |                           |  |  |
|-------------------------------------------------------------------------------|-----------------------------------|-------------------------------|---------------------------|--|--|
| Evaporator<br>temperature(°C)                                                 | Refrigeration<br>Capacity* (tons) | Specific Power<br>Consumption | Increase in kW/ton<br>(%) |  |  |
| 5                                                                             | 67.58                             | 0.81                          | -                         |  |  |
| 0                                                                             | 56.07                             | 0.94                          | 16                        |  |  |
| -5                                                                            | 45.98                             | 1.08                          | 33                        |  |  |
| -10                                                                           | 37.2                              | 1.25                          | 54                        |  |  |
| -20                                                                           | 23.12                             | 1.67                          | 106                       |  |  |

\* Condenser temperature 40°C

Hence it was recommended that temperature setting of outlet will be changed from present 23 °C to 25 ° C and keeping inlet temperature unaltered.

Pragjyotish College will further study the overall effect on the facility and may further tune the temperature settings.

Based on the recommended change of AC temperature settings, calculation for energy saving was completed and this has been elaborated in ECM calculation sheet (Annexure).



#### **Energy Saving Calculations:**

| Particular                   | Unit         | Value |
|------------------------------|--------------|-------|
| Estimated consumption of Acs | kWh/hr       | 56235 |
| Estimated Saving             | %            | 3%    |
| Operating Hrs per day        | hrs/day      | 3     |
| Operating days per year      | Days/year    | 100   |
| Estimated Saving             | kWh/year     | 1687  |
| Unit Rate                    | Rs/kWh       | 6.75  |
| Annual Saving                | Rs Lakh/year | 0.1   |



Figure 14 Air Conditioner



### 6. PRIORITIZATION OF ENERGY CONSERVATION MEASURES

| Sr.<br>No | Equipment<br>Name      | ECM Details                                                                          | Investment<br>(Rs. In<br>Lacs ) | Savings<br>(kWh/<br>year) | Carbon<br>credit<br>(Tons<br>of Co2) | Saving<br>(Rs. In<br>Lacs<br>/Year<br>) | Payback<br>(Years) |
|-----------|------------------------|--------------------------------------------------------------------------------------|---------------------------------|---------------------------|--------------------------------------|-----------------------------------------|--------------------|
| 1         | Air<br>Conditioner     | Optimize the Air<br>Conditioner<br>temperature<br>setting to 23-25<br>degree Celsius | 0                               | 1687                      | 1.5                                  | 0.11                                    | 0                  |
| 2         | Ceiling Fan<br>(100 w) | Replacement of<br>existing fans with<br>energy efficient<br>Super fans               | 0.68                            | 1146.6                    | 0.97                                 | 0.08                                    | 8.76               |
| 3         | CFL                    | Replacement of<br>conventional<br>lights (CFL) with<br>12w LEDs                      | 0.26                            | 427.68                    | 0.36                                 | 0.03                                    | 8.87               |
| 4         | Tube Light             | Replacement of<br>conventional Tube<br>light with 20w<br>LEDs                        | 6.81                            | 9820.8                    | 8.35                                 | 0.66                                    | 10.27              |
| 5         | Ceiling Fan<br>(70 w)  | Replacement of<br>existing fans with<br>energy efficient<br>Super fans               | 14.04                           | 12789                     | 10.87                                | 0.86                                    | 16.27              |
|           | тс                     | TAL                                                                                  | 21.79                           | 25871.08                  | 22.05                                | 1.74                                    | 12.5               |



### 7. LIST OF INSTRUMENTS

#### Power analyser



Picture 1 Fluke Power analyser

Specification of the 434 Fluke power analyser:

| Electrical                           |                                                                            |
|--------------------------------------|----------------------------------------------------------------------------|
| Single Phase                         | YES                                                                        |
| Three Phase                          | YES                                                                        |
| USER INTERFACE                       |                                                                            |
| LCD-Type                             | Graphic LCD                                                                |
| LCD-Dimension                        | 127 x 88 mm                                                                |
| Traditional energy analysis          | V, I, P, Q, S, F, PF, $\cos \varphi$ , peak, minimum, maximum, demand etc. |
| Voltage                              | 1V to 1000 V phase to neutral                                              |
| Current                              | Up to 6000 A                                                               |
| Frequency                            | 42.50 to 57.50 Hz                                                          |
| Precision Voltage,<br>Current, Power | ±0.1 %                                                                     |



#### Lux meter



Picture 2 Lux meter

Indi 6171 Lux meter was used to measure the lux levels.

#### **Digital Clamp Meter**



Picture 3 Mastech M266 clamp meter

Mastech M266C Digital AC Clamp Meter is used to measure the instantaneous current. Following are the specification for this clamp meter:

| Specification | Range       | Accuracy |
|---------------|-------------|----------|
| DC Voltage    | 200mV       | -1.005   |
|               | 2V/20V/200V | -3.005   |
|               | 1000V       | -3.008   |
| AC Voltage    | 200V        | -5.01    |



|                 | 750V                      | -5.012 |
|-----------------|---------------------------|--------|
| AC Current      | ent 20A                   |        |
|                 | 200A                      | -5.025 |
|                 | 1000A                     | -10.03 |
| Resistance      | 200Ω                      | -5.01  |
|                 | 2ΚΩ/20ΚΩ/200ΚΩ/2ΜΩ        | -8.01  |
| Temperature     | 0°C~400°C(32°F~752°F)     | -3.01  |
|                 | 401°C~750°C(752°F~1382°F) | -3.02  |
| Insulation Test | 20ΜΩ                      | -2.02  |
|                 | 2000MΩ(Note<500Ω)         | -2.04  |
|                 | 2000MΩ(Note>500Ω)         | -2.05  |

#### Infrared thermometer



Picture 4 HTC IRX 64 Infrared thermometer

HTC IRX 64 infrared thermometer was used in order to record the temperature of the insulations. The following are the specifications:

| Specification       | Range                 |
|---------------------|-----------------------|
| IR                  | -50°C~1050 °C         |
| Contact             | -50°C~1370 °C         |
| IR Temp. Resolution | 0.1°C                 |
| Basic Accuracy      | +/- 1.5% of reading   |
| Emissivity          | Adjustable 0.10 ~ 1.0 |
| Optical resolution  | 30 : 1                |



#### Thermal Imager



Picture 4 FLIR TG 167 Thermal imager

FLIR TG 167 Thermal imager was used in order to record the temperature of the insulations.

The following are the specifications:

| Accuracy                 | ±1.5% or 1.5°C (2.7°F)                                                                            |
|--------------------------|---------------------------------------------------------------------------------------------------|
| Detector Type            | Focal plane array (FPA), uncooled micro bolometer                                                 |
| IR Resolution            | 80 × 60 pixels                                                                                    |
| Laser                    | Dual diverging lasers indicate the temperature measurement area, activated by pulling the trigger |
| Memory Type              | Micro SD card                                                                                     |
| Object Temperature Range | -25°C to 380°C (-13°F to 716°F)                                                                   |
| Thermal Sensitivity/NETD | <150 mK                                                                                           |
| Display                  | 2.0 in. TFT LCD                                                                                   |



#### 8. SOLAR ANNEXURE

#### 1) Introduction

The solar energy has a great potential as future source of energy. With its availability in large quantity almost in every corner of the country, solar power has the distinctive advantage of generating power at local and decentralized levels and being one of the prime factors for empowering people at grassroots level. The solar mission, which is part of the National Action Plan on Climate change has been set up to promote the development and use of solar energy for power generation and other uses with the ultimate objective of making solar energy competitive with fossil-based energy options. The solar photovoltaic device systems for power generation had been deployed in the various parts in the country for electrification where the grid connectivity is either not feasible or not cost effective as also some times in conjunction with diesel based generating stations in isolated places, communication transmitters at remote locations. With the downward trend in the cost of solar energy and appreciation for the need for development of solar power, solar power projects have recently been implemented. A significant part of the large potential of solar energy in the country could be developed by promoting solar photovoltaic power systems of varying sizes as per the need and affordability coupled with ensuring adequate return on investment.

#### 2) Benefits of Solar Energy

- a. Power from the sun is clean, silent, limitless and free.
- b. Photovoltaic process releases no CO2, SO2, or NO2 gases which are normally associated with burning finite fossil fuel reserves and don't contribute to global warming.
- c. Photovoltaic are now a proven technology which is inherently safe as opposed to other fossil fuel based electricity generating technologies.
- d. Solar power shall augment the needs of peak power needs.
- e. provides a potential revenue source in a diverse energy portfolio
- f. Assists in meeting renewable portfolio standards goals.



This proposal is prepared for design, engineering, procurement / manufacture and installation of solar power generating system. The grid-tie solar photovoltaic power generation system is mainly composed of PV array, String Inverter, and PV mounting structure.

It also consists of supporting devices like AC / DC switchgears, Lighting Arrestor, Earth Electrodes, AC / DC cables. As there is no any battery, it's maintenance cost is negligible and initial investment per KW is very low.

#### 3) Objective

- Provide reliable, clean, regulated, un-interrupted power on demand to the preidentified critical loads
- > System to provide low life cycle cost and maximize savings to the beneficiaries.
- To save diesel in institutions and other commercial establishments including industry facing huge power cuts especially during daytime.

#### 4) Design Assumptions

General

- a. The Solar Radiation Data's are based on standard books & simulation software as NASA and Metronome. The Mean Hourly Radiation Data is considered.
- b. The module rating considered is tentative. The exact module sizing and rating will depend on the availability of cell grade and site suitability.
- c. Solar Panels are roof/ground mounted in one location. Environmentally protected, closed, ventilated, inverter room at minimum distance from PV modules.
- d. Application: Self consumption, captive grid or NET metering.
- e. Emergency Backup: Generator or any other source in absence of Grid.

#### 5) System Description

Solar Power Plant comprises of the main equipment and components listed below:

- 1. Solar PV Modules
- 2. String Inverter with MPPT



- 3. Module mounting system
- 4. Monitoring system
- 5. Cables & connectors

Each of the sub systems has been described for the functionality and operation modes. The physical construction of the system follows a modular approach, which is field-tested and is regularly used for delivery of power systems.

### 5.1 Solar PV Module (Electrical Features)

The PV modules convert the light reaching them into DC power. The amount of power they produce is roughly proportional to the intensity and the angle of the light reaching them. They are therefore required to be positioned to take maximum advantage of available sunlight within sitting constraints.

#### 5.2 Solar PV Module (Mechanical Features)

Solar Module design will conform to following Mechanical requirements:

- > Toughened,
- Iow iron content,
- ➤ High transmissivity from glass.
- > Anodized Aluminium Frame.
- > Ethyl Vinyl Acetate (EVA) encapsulating.
- > Tedlar/Polyester trilaminate back surface.
- ABS plastic terminal box for the module output termination with gasket to prevent water & moisture.
- Resistant to water, abrasion hail impact, humidity & other environment of actors for the worst situation at site.

#### 5.3 Module Mounting Structure

The structure shall be designed to allow easy replacement of any module and shall be in line with site requirement. Structure shall be designed for simple mechanical and electrical



installation. It shall support SPV modules at a given orientation, absorb and transfer the mechanical loads to the ground properly. There shall be no requirement of welding or complex machinery at site. The array structure shall have tilt arrangement to adjust the plane of the solar array for optimum tilt.

#### 5.4 Junction Box

The junction boxes shall be dust, vermin and waterproof and made of FRP/ABS Plastic with IP65 protection. The terminals shall be connected to copper bus bar arrangement of proper sizes. The junction boxes shall have suitable cable entry points fitted with cable glands of appropriate sizes for both incoming and outgoing cables. Suitable marking shall be provided on the bus bar for easy identification and cable ferrules shall be fitted at the cable termination points for identification

#### 5.5 String Inverter

The STRING INVERTER is A combination of Solar Charger (MPPT), Inverter and synchronization unit for two different AC supplies, all housed in a single unit. Maximum power point tracker (MPPT) shall be integrated into it to maximize energy drawn from the solar array. The Inverter converts the DC available from the array into an AC output. The output of the inverter is filtered to reduce the harmonics to an acceptable level (less than 5%). MPPT shall be microprocessor/micro controller based to minimize power losses and maximize energy utilization. The efficiency of MPPT shall not be less than 90% and shall be designed to meet the solar PV Array capacity.

#### 5.6 AC /DC Cables

We use DC & AC cables of Lap, Apar, Polycab, Havels, Finolex or equivalent make to ensure minimum losses in transmission.

In order to complete the energy study that leads to the construction of a photovoltaic installation, hourly series of global horizontal irradiation values for a complete year are used, which resume the irradiation and other meteorological parameters behaviour over a long term. We use PV. SYST. Software to workout optimum power production at site with minimum loses.



#### 5.7 Grounding and Lighting Protection

- A protective earth (PE) connection ensures that all exposed conductive surfaces are at the same electrical potential as the surface of the Earth, to avoid the risk of electrical shock. It ensures that in the case of an insulation fault (a "short circuit"), a very high current flows, which will trigger an over current protection device as fuses and circuit breakers that disconnects the power supply.
- A functional earth connection serves a purpose other than providing protection against electrical shock. In contrast to a protective earth connection, a functional earth connection may carry a current during the normal operation of a device.
- Lightning protection is a very specialized form of grounding used in an attempt to divert the huge currents from lightning strikes. A ground conductor on a lightning arrester system is used to dissipate the strike into the earth.
- Lightning ground conductors must carry heavy currents for a short period of time. To limit inductance and the resulting voltage due to the fast pulse nature of lightning currents, lightning ground conductors may be wide flat strips of metal, usually run as directly as possible to electrodes in contact with the earth.
- In proposal, the entire system is fully provided with the required lighting and grounding protection.



#### 6) Solar PV Location

Average Unit Consumption / year of Buildings is **116904** Units (Ref. 12 months Electricity Bills)

| Sr.<br>No. | Name of Building | Length (ft.) | Width (ft.) | Area (Sq. ft.) | Plant Installed (kW) |
|------------|------------------|--------------|-------------|----------------|----------------------|
| 1          | F Block          | 109          | 53          | 5777           | 72.21                |
| 2          | E Block          | 89           | 59          | 5251           | 65.64                |
| 3          | D Block          | 72           | 23          | 1656           | 20.7                 |
|            | Total            | 270          | 135         | 12684          | 158.55               |

Total Available Area = 12684 Sq. Ft. & As per available shadow free Area maximum 158.55 KW Plant can be installed on buildings as per details mentioned in above table.



#### 7) Capacity Evaluation

| Calculation to Full fill Building Total Load Requirement |                                                    |        |              |  |  |
|----------------------------------------------------------|----------------------------------------------------|--------|--------------|--|--|
| Sr. No.                                                  | Details                                            | Value  | Unit         |  |  |
| 1                                                        | Average electrical consumption per year            | 116904 | KWh          |  |  |
| 2                                                        | Units generated per day per KWp                    | 3.5    | KWh/KWp/day  |  |  |
| 3                                                        | Units generated per Year per KWp (300 days / Year) | 1,050  | KWh/KWp/Year |  |  |
| 4                                                        | Solar KW capacity For 116904 KWh consumption/year  | 111    | KWp          |  |  |

#### Calculation for Required Solar Capacity plant to fulfill In-house Requirement

As per electrical consumption (Building Load), capacity of Solar Power Plant required is 111KWp. As per shadow free space available on building maximum 150-160 KWp plant can be installed which is more than the actual requirement of full Electrical Load.

## It is suggested to install Solar Plant of Capacity 111 KWp, which can be installed on building itself & it covers all required load.

The SPV power plant with proposed capacity of 111KWp would be connected to the main electrical distribution panel. The system would meet full load requirement of the connected load during the day. Advance control mechanism in the Power Conditioning Unit will ensure that the maximum power generated by PV modules will be utilized first and the balance requirement of power will be met by either grid or DG set

The 111 KWp SPV Power Plant is estimated to afford annual energy feed of 116904 KWh/year (After considering all losses) considering efficiency of the solar module as 15.16%, Power Conditioning Unit (PCU) efficiency as 98.3% and losses in the DC and AC system as 3%.



### 8) Budgetary Estimation of the Project

| Details                                                                                  | Value  | Unit        |
|------------------------------------------------------------------------------------------|--------|-------------|
| Shadow free space required for approx. 1 KWp Solar Plant                                 | 80     | Sq.Ft       |
| Shadow free space available on building                                                  | 12684  | Sq.Ft.      |
| Solar Plant capacity to be Installed on building                                         | 158.55 | KWp         |
| Solar Plant Requirement as per actual consumption                                        | 111    | KWp         |
| Installation Cost Per KW for 1KWp Solar Plant                                            | 0.5    | Rs. In Lakh |
| Gross Estimated System cost (For 111 KWp Grid Connected Solar Plant)                     | 55.5   | Rs. In Lakh |
| Unit generated per day per kWp                                                           | 3.5    | KWh         |
| Electricity generation per day for 111 KWp Grid Connected Solar Plant                    | 388.5  | KWh/day     |
| Electricity generation per year for 111 KWp Grid Connected Solar Plant (300 days / year) | 116550 | KWh/year    |
| Average Electricity Unit Cost                                                            | 6.8    | Rs./KWh     |
| Electricity cost saved per year                                                          | 7.92   | Rs. In Lakh |
| Simple payback period                                                                    | 7.00   | Years       |



### 9. SITE PHOTOGRAPHS

















# ENERGY AUDIT REPORT

Year: 2021

PRAGJYOTISH COLLEGE GUWAHATI – 781009

Prepared By Department of Physics, Pragjyotish College

PRAGNOTISH COLLEGE BHARALUMUKH GUNAHATI-9



### **CONTENTS**

| CONTENTS        | 1 |
|-----------------|---|
| DISCLAIMER      |   |
| ENERGY AUDITING | 3 |
| DETAILED AUDIT  | 4 |
| OBSERVATIONS    | 5 |
| RECOMMENDATION  | 6 |
| TABLE 1         | 7 |
|                 |   |



DISCLAIMER:

Energy Audit of Pragjyotish College, Guwahati 09, for estimating the annual power consumed by lights is conducted by Physics Department, Pragjyotish College, fully based on the data shared by the college, office and the energy audit report of 2019 conducted by PPS Energy Solutions Pvt. Ltd.



ENERGY AUDITING:

As per the Energy Conservation Act, 2021, Energy Audit is defined as "the verification, monitoring and analysis of use of energy including submission of technical report containing recommendations for improving energy efficiency with cost benefit analysis and an action plan to reduce energy consumption".



#### DETAILED AUDIT:

The electricity supply for Pragjyotish College is provided by Assam Power Distribution Company Limited.

Based on the data available from the college office, it is found that as compared to the previous audit report a significant change has taken place in terms of replacement of non-LED lights with LED lights. Thus this audit estimates the annual power consumed by lights.

#### ANNUAL POWER CONSUMED BY TUBE LIGHTS:

There are 682 non-LED tube lights as per the last audit out of which now 75 are replaced by LED ones. Thus the total power consumed per year by those tube lights is 16,705 kWHr. (Please refer Table 1)

#### ANNUAL POWER CONSUMED BY CFL/LED LIGHTS:

There are 99 CFL lights as per the last audit out of which now 44 are replaced by LEDs. Thus the total power consumed per year by those lights is 1,093 kWHr. (Please refer Table 1)

#### GRAND TOTAL OF POWER CONSUMED BY TUBE LIGHTS:

The grand total of the above two categories is 17,798 kWHr/Yr.



**OBSERVATIONS:** 

Total energy saved by the replacement of CFL and Non-LED Tube Lighting by LED and LED-tube during the year 2021 is 1162 kWHr. (Please refer Table 1)

\_



**RECOMMENDATION:** 

If all the remaining non-LED lights are replaced by LED lights an additional amount of 8,104 kWh/Yr can be saved. (Please refer Table 1)



Table 1: Energy saved and can be saved use of LED instead of non-LED lights in Pragjyotish College.

| Replacement of CFL and Non-LED Tube Lighting by LED and LED-tube during the year 2021 |              |                |              |                           |                                   |                                |                                                         |                                             |                                 |
|---------------------------------------------------------------------------------------|--------------|----------------|--------------|---------------------------|-----------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------|---------------------------------|
| Already replaced                                                                      |              |                |              |                           |                                   |                                |                                                         |                                             |                                 |
| Light<br>Type                                                                         | Power<br>(W) | Replaced<br>By | Power<br>(W) | No. of<br>Replacem<br>ent | Aver<br>age<br>Hour<br>per<br>Day | Active<br>Days<br>in a<br>year | Power<br>Consu<br>med by<br>Non-<br>LED<br>Lightin<br>g | Power<br>Consum<br>ed by<br>LED<br>Lighting | Power<br>Saved<br>(kWHr/<br>Yr) |
| CFL                                                                                   | 18           | LED            | 12           | 44                        | 3                                 | 240                            | 570                                                     | 380                                         | 190                             |
| Non-<br>LED<br>Tube                                                                   | 36           | LED-<br>Tube   | 18           | 75                        | 3                                 | 240                            | 1944                                                    | 972                                         | 972                             |
|                                                                                       |              |                |              |                           |                                   | Total                          | 2514                                                    | 1352                                        | 1162                            |
| Still need to replace                                                                 |              |                |              |                           |                                   |                                |                                                         |                                             |                                 |
| CFL                                                                                   | 18           | LED            | 12           | 55                        | 3                                 | 240                            | 713                                                     | 475                                         | 238                             |
| Non-<br>LED<br>Tube                                                                   | 36           | LED-<br>Tube   | 18           | 607                       | 3                                 | 240                            | 15733                                                   | 7867                                        | 7867                            |
|                                                                                       |              |                |              |                           |                                   | Total                          | 16446                                                   | 8342                                        | 8104                            |
|                                                                                       |              |                |              |                           |                                   |                                |                                                         |                                             |                                 |
|                                                                                       |              |                |              |                           |                                   | Present power<br>consumption   |                                                         |                                             | 17798                           |

ENERGY AUDIT PRAGJYOTI COLLEGE 2021



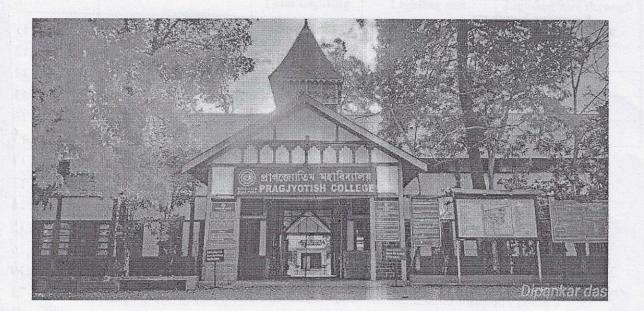


#### PRAGJYOTISH COLLEGE

[ESTD: 1954; NAAC ACCREDITED (3<sup>no</sup> CYCLE); RECOGNISED UNDER SECTIONS 2(f) AND 12(B) OF UGC] Guwahati – 781009 Assam India

Date: 02/05/22

#### TO WHOM IT MAY CONCERN


This is to certify that Physics Department, Pragjyotish College, has conducted the Energy Audit of Pragjyotish College, Guwahati 09, for estimating the annual power consumed by lights and found that compared to the previous year power saved is 1,162 kWh in one year because of replacement of many non-LED lights with LED lights. Further, it has also been found that if all the remaining non-LED lights are replaced by LED lights an additional amount of 8,104 kWh/Yr can be saved.

Mr. Sauroar Rajkhowa Head Physics Department Pragjyotish College Guwahati -781009

Saumar Rajkhowa Head, Physics Department email: saumarrajkhowa027@gmail.com Mobile: +91 9854152001 Manab Deka Physics Department email: dekamanab2020@gmail.com Mobile: +91 9435041524 Samrat Dey Physics Department email: samratdgr8@gmail.com Mobile: +91 9854655097

## ANNUAL ENERGY AUDIT REPORT

April 2022 to March 2023



### **PRAGJYOTISH COLLEGE**

Santipur, Guwahati, Assam -781009.

May -2023

Prepared by

### Thunderbolt Energy Consultancy, Pune

Reg. Address- 97/2 Nirmal Apartment, Paud Road, Bhusari Colony, Kothrud Depot, Pune-411038, Maharashtra, India Phone: +91 9098 580 420 Email: <u>tecofficeinfo@gmail.com</u> Website- <u>www.thunderboltenergy.in</u>

a

PRACINOTISH COLLE PRACINOTISH COLLE EHARALUMUKH



### Table of Contents

| Disclain | ner                                                                | . 3 |
|----------|--------------------------------------------------------------------|-----|
| Acknow   | ledgement                                                          | . 4 |
| Why En   | ergy Audit?                                                        | . 5 |
| Energy A | Audit Team                                                         | . 6 |
| Executiv | ve Summary                                                         | . 7 |
| Abbrevi  | ations                                                             | 11  |
| 1. Intr  | oduction                                                           | 12  |
| 1.1      | Objectives                                                         | 12  |
| 1.2      | Audit methodology                                                  | 13  |
| 1.3      | Historical Data Analysis                                           |     |
| 1.4      | Actual measurement and data analysis                               | 13  |
| 1.5      | Identification and evaluation of Energy Conservation Opportunities | 13  |
| 1.6      | Monitoring and Control                                             | 13  |
| 1.7      | About Thunderbolt Energy Consultancy                               | 14  |
| 2. Ene   | brgy Details                                                       | 15  |
| 3. Stud  | dy of connected load                                               | 16  |
| 4. Stu   | dy of Electrical Energy Consumption                                | 19  |
| 5. Car   | bon Footprint                                                      | 21  |
| 6. Stu   | dy of utilities                                                    | 23  |
| 6.1      | Study of Lighting                                                  | 23  |
| 6.2      | Air-conditioners                                                   | 23  |
| 6.3      | Ceiling Fans                                                       | 23  |
| 6.4      | Office Load                                                        | 23  |
| 6.5      | Submersible Pump Load                                              | 23  |
| 7. Ene   | ergy conservation proposals                                        | 24  |
| 7.1      | Replacement of 341 Nos Old, FTLs with 18 W LED fittings            | 24  |
| 7.2      | Replacement of 39 Nos CFL fitting with 9 W LED fittings            | 25  |
| 7.3      | Replacement of 716 Nos Old Fans with STAR Rated Ceiling Fans       | 26  |
| 7.4      | Replacement of 34 Nos old ACs with STAR Rated ACs.                 | 27  |
| 7.5      | Optimize the Temperature Setting of ACs                            | 28  |
| 8. Sun   | nmary of Savings                                                   | 29  |



### Thunderbolt Energy Consultancy



### List of Table

| Table 1 The team members of Thunderbolt Energy Consultancy                          | 6    |
|-------------------------------------------------------------------------------------|------|
| Table 2 Details of energy consumption                                               | 7    |
| Table 3 Recommendations for energy savings                                          | 9    |
| Table 4 Details of energy consumption                                               | . 15 |
| Table 5 Location wise study of Electrical fittings in various buildings             | . 16 |
| Table 6 Lighting load percentage in total consumption                               | . 18 |
| Table 7 Equipment wise Connected Load                                               | . 18 |
| Table 8 Electricity bills of consumer 00600002737                                   | . 19 |
| Table 9 Key observations of consumer 006000002737                                   | . 19 |
| Table 10 Month wise Consumption of Energy & CO2 Emissions of consumer 006000002737. | . 22 |
| Table 11 Tube light calculation                                                     | . 24 |
| Table 12 CFL light calculation                                                      | . 25 |
| Table 13 Fan calculation                                                            | . 26 |
| Table 14 Air Conditioner calculation                                                | . 27 |
| Table 15 Temperature Setting of ACs calculation                                     | . 28 |
| Table 16 Summary of savings                                                         | . 29 |

### List of Figure

| Figure 1- Year Wise Net Savings (Rs. Lakh)                      | 9    |
|-----------------------------------------------------------------|------|
| Figure 2- Block wise connected load in kW                       | . 17 |
| Figure 3 Distribution of connected load                         | . 18 |
| Figure 4 Month wise energy consumption of consumer 006000002737 | . 20 |
| Figure 5 Month wise electricity bill of consumer 006000002737   | . 20 |
| Figure 6 Month wise electricity bill of consumer 006000002737   | . 21 |
| Figure 7 Month wise CO2 emissions of consumer 006000002737      | . 22 |



### Thunderbolt Energy Consultancy

#### Disclaimer

This report was prepared for Pragjyotish College, Guwahati. The information herein is confidential and shall not be divulged to a third party without the prior written permission of Thunderbolt Energy Consultancy, its affiliates and subsidiaries, including Thunderbolt Energy Consultancy, and their respective officers, employees or agents, individually and collectively, referred to in this clause as 'Thunderbolt Energy Consultancy'.

Thunderbolt Energy Consultancy, assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Thunderbolt Energy Consultancy, entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.

All the calculations for energy savings and recommendations to achieve these savings given in this report is fully based on the data shared by the college with Thunderbolt Energy Consultancy.



### Thunderbolt Energy Consultancy

ISO 9001:2015, ISO 14001:2015, ISO 50001:2018, ISO/IEC 17020:2012 ⊕ www.thunderboltenergy.in ≥ tecofficeinfo@gmail.com ♦ +91-9098 580 420 <u>Follow us on</u> (in) (f) (s) (@) (e) (



#### Acknowledgement

We express our sincere gratitude to the authorities of Pragjyotish College, Guwahati for entrusting and offering the opportunity of energy performance assessment assignment.

- Dr. Manoj Kumar Mahanta Principal
- Dr. Manjit Kr. Mazumdar Co-Ordinator (IQAC)

We are thankful to Pragjyotish College, Guwahati for their positive support in undertaking the task of system mapping and energy efficiency assessment of all electrical system, air conditioners, utilities and other equipment. The field studies would not have been completed on time without their interaction and guidance. We are grateful to their cooperation during field studies and providing necessary data for the study.

We are also thankful to all field staff and agencies working with whom we interacted during the field studies for their wholehearted support in undertaking measurements and eagerness to assess the system / equipment performance and saving potential. Also thankful to all concerned staff interacted during the conduct of this exercise for completing official documentations.



### Thunderbolt Energy Consultancy

ISO 9001:2015, ISO 14001:2015, ISO 50001:2018, ISO/IEC 17020:2012 ⊕ www.thunderboltenergy.in ≥ tecofficeinfo@gmail.com ♦ +91-9098 580 420 <u>Follow us on</u> (in) (f) (s) (@) (e) (



### Why Energy Audit?

An energy audit determines the amount of energy consumption affiliated with a building and the potential savings associated with that energy consumption. Additionally, an energy audit is designed to understand the specific conditions that are impacting the performance and comfort in your facility to maximize the overall impact of energy-focused building improvements.

An energy audit is a systematic review of the energy consuming installations in a building or premises to ensure that energy is being used sensibly and efficiently. An energy audit usually commences with the collection and analysis of all information that may affect the energy consumption of the building or premises, then follows with reviewing and analyzing the condition and performance of various building services installations and building management, with an aim at identifying areas of inefficiency and suggesting means for improvement.

Through implementation of the suggested improvement measures, building owners can get the immediate benefit for paying less for energy bills. On the other hand, lowering of energy consumption in buildings will lead to the chain effect that less fossil fuel will be burnt for electricity generation by the power supply companies and relatively less pollutants and greenhouse gases will be introduced into the atmosphere, thus contributing to conserve the environment and to enhance sustainable development.



### Thunderbolt Energy Consultancy

### **Energy Audit Team**

| Name                        | Role                                                             | Field of expertise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mr. Mahesh<br>Khode         | Project coordinator,<br>ECM verification,<br>Report verification | Graduate Electrical engineer, BEE Certified<br>Energy Manager, ADIS Safety, Certified First<br>Aider with experience in Energy Efficiency<br>Assessment, Energy Audit, Safety Audit,<br>Firefighting system, Fire Extinguisher, Electrical<br>Safety audit, Green Audit, Green building, ECBC,<br>EHS, OHSA, Environment policy, Environmental<br>Audit, Industrial Utility System, Project<br>Management, Electrical Distribution System,<br>Commercial Buildings and Industrial Maintenance<br>Services. |
| Mr. Kaustubh<br>Bhatwadekar | Energy Auditor and<br>ECM verification                           | Graduate Mechanical engineer, M.Tech IIT<br>Bombay, BEE Certified Energy Auditor,<br>Experience In Industrial Energy, distribution<br>system, Energy Efficiency Assessment, Green<br>audit and Environment audit.                                                                                                                                                                                                                                                                                          |
| Mr. Shantanu<br>Deshmukh    | Data tabulation and<br>analysis & report<br>preparation          | Graduate in Electrical & Electronics Engineering<br>with experience in field data collection, Data<br>analysis, Green building and Environment<br>assessment.                                                                                                                                                                                                                                                                                                                                              |

#### Table 1 The team members of Thunderbolt Energy Consultancy



# Thunderbolt Energy Consultancy



### **Executive Summary**

After the Field measurements & analysis, we present herewith important observations made and various measures to reduce the Energy Consumption & mitigate the CO<sub>2</sub> emissions. Pragjyotish College, Guwahati, consumes Energy in the form of Electrical Energy used for various gadgets, Office & other facilities.

#### 1. Present Energy Consumption

In the following Table, we present the details of Energy Consumption.

| G     |           | College Bui              | lding            |  |  |  |
|-------|-----------|--------------------------|------------------|--|--|--|
| Sr no | Parameter | Energy consumed, (Units) | Bill Amount (Rs) |  |  |  |
| 1     | Maximum   | 16,442                   | 1,35,964         |  |  |  |
| 2     | Minimum   | 5,025                    | 52,626           |  |  |  |
| 3     | Average   | 10,184                   | 88,884           |  |  |  |

#### Table 2 Details of energy consumption

#### 2. Energy Conservation Projects already installed

- 1. Usage of LED lights at some indoor locations.
- 2. Usage of LED Lights for outdoor lighting.
- 3. Solar lighting system Installed.
- 4. Solar Panel system Installed.
- 5. BEE Star rated air conditioners Installed.



# Thunderbolt Energy Consultancy



#### 3. Key Observations

- 1. College has 125 kVA Diesel Generator set for uninterrupted power supply in case of supply failure from APDCL.
- Presently 100 kVA transformer is installed in college campus and it will extend to 315 kVA in upcoming time.
- 3. There are about 341 Nos old Tube light fittings which need to be replaced by 18 W LEDs.
- 4. There are about 39 Nos 18 W CFL light fittings which need to be replaced by 9 W LEDs.
- 5. There are 716 Nos of ceiling fans which need to be replaced with STAR rated fans.
- 6. Optimize the temperature setting to 23-25 degree Celsius.
- 7. There is minimum or practically negligible use of lights during day time as the building structure has possibility of daylight usage.
- 8. The lighting arrangements are well balanced with arrangements to switch ON and OFF.
- 9. The policy of college is switch off the lights and other electrical equipment when they are not in use.
- 10. Cleanliness is well maintained. In- house light fittings are cleaned time to time.
- 11. Lights are negligibly operated during day time. The lights are operated manually.
- 12. There is no any sensor-based lighting system.
- 13. The college is utilizing natural lighting as first preference.
- 14. Computers, printers and other equipment are switched off at the end of the day.
- 15. The all the electrical equipment is well operated.
- 16. The overall electrification system is regularly monitored by a duly qualified electrician.
- 17. 15 number of solar LED Street lights of capacity 40W each panel and 15W LED's are available in the campus area.
- 18. 5 kW solar panel Installed on library building with 325W panel capacity.
- 19. Fire extinguisher is present in campus area.
- 20. The campus area is well facilitated with CCTVs for security purpose.
- 21. Water is supplied from bore well to tank and 3 nos. of Pump set has capacity of 1.5 HP.



# Thunderbolt Energy Consultancy



#### 4. Recommendations

| Sr.<br>No | Recommendation                                                         | Annual<br>Saving<br>potential,<br>kWh/Annum | Annual<br>Monetary<br>Gain, Rs<br>Lakh/Annum | Investment<br>Required,<br>Rs/<br>Lakh/Annum | Paybac<br>k<br>period,<br>Months |
|-----------|------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------|
| 1         | Replacement of 341 Nos Tube<br>Light fittings with 18W LED<br>fittings | 5,627                                       | 0.380                                        | 2.217                                        | 70                               |
| 2         | Replacement of 39 Nos CFL fittings with 9 W LED fittings               | 263                                         | 0.018                                        | 0.084                                        | 57                               |
| 3         | Replacement of 716 Nos Old<br>Ceiling Fans with STAR rating<br>fans    | 21,480                                      | 1.450                                        | 15.752                                       | 130                              |
| 4         | Replacement of 34 Nos Old 1.5<br>TR ACs with STAR rating ACs           | 21,675                                      | 1.463                                        | 17.978                                       | 147                              |
| 5         | Optimize the temperature setting<br>to 23-25 degree Celsius            | 1,224                                       | 0.083                                        | NA                                           | NA                               |
|           | Total                                                                  | 50,269                                      | 3.393                                        | 36.030                                       | -                                |

#### Table 3 Recommendations for energy savings

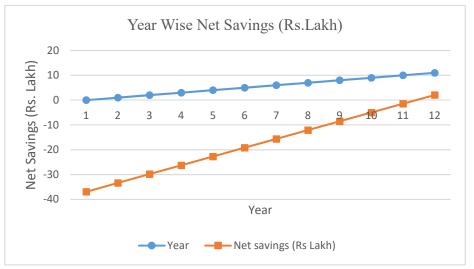



Figure 1 Year Wise Net Savings (Rs. Lakh)



# Thunderbolt Energy Consultancy



### 5. Renewable Energy Generation in the premises

| Sr. No. | Particulars                                             | Value   | Unit      |
|---------|---------------------------------------------------------|---------|-----------|
| 1       | Stand Alone Solar Plant                                 | 5       | kW        |
| 2       | Electricity Generation for 1 kW plant                   | 3.50    | kWh       |
| 3       | Daily running hours per day for 5 kW plant              | 6.00    | Hrs       |
| 4       | Total Working Hours in 250 Days per year for 5 kW plant | 1,500   | Hrs       |
| 5       | Total Generation per Year for 5 kW plant                | 26,250  | kWh/Annum |
| 6       | Present Annual electrical consumption of premises       | 112,026 | kWh/Annum |
| 7       | Renewable Energy to Conventional Energy Consumption     | 23.43   | %         |

#### Table 4 Details of Energy Generated by Solar Street Lights

| Sr. No. | Particulars                                                           | Value   | Unit      |
|---------|-----------------------------------------------------------------------|---------|-----------|
| 1       | 15 Solar Street Light with 40W panel each                             | 0.60    | kW        |
| 2       | Electricity Generation for 0.04 kW plant                              | 0.14    | kWh       |
| 3       | Daily running hours per day for 15 Solar Street Light                 | 6.00    | Hrs       |
| 4       | Total Working Hours in 250 Days per year for 15 Solar<br>Street Light | 1,500   | Hrs       |
| 5       | Total Generation per Year for 15 Solar Street Light                   | 126     | kWh/Annum |
| 6       | Present Annual electrical consumption of premises                     | 112,026 | kWh/Annum |
| 7       | Renewable Energy to Conventional Energy Consumption                   | 0.11    | %         |

#### Table 4 Details of Energy Generated by Present Solar System

| Sr. No. | Particulars                                         | Value   | Unit      |
|---------|-----------------------------------------------------|---------|-----------|
| 1       | Stand Alone Solar Plant of 5 kW                     | 26,250  | kWh/Annum |
| 2       | 15 Solar Street Light with 40W panel each           | 126     | kWh/Annum |
| 3       | Total                                               | 26,376  | kWh/Annum |
| 4       | Present Annual electrical consumption of premises   | 112,026 | kWh/Annum |
| 5       | Renewable Energy to Conventional Energy Consumption | 23.54   | %         |

Renewable energy generation in the college premise is 23.54 % as per the Present Annual electrical consumption of premises.



### Thunderbolt Energy Consultancy



#### 6. Notes & Assumptions

- 1. Daily working hours-03
- 2. Annual working days- 250
- 3. Rate of Electrical Energy- Rs 6.75 /- per kWh.

### Abbreviations

| CFL | : | Compact Fluorescent Lamp |  |
|-----|---|--------------------------|--|
| FTL | : | Fluorescent Tube Light   |  |
| LED | : | Light Emitting Diode     |  |
| V   | : | Voltage                  |  |
| Ι   | : | Current                  |  |
| kW  | : | ilo- Watt                |  |
| kWh | : | kilo-Watt Hour           |  |
| kVA | : | Active Power             |  |
| PF  | : | Power Factor             |  |



# Thunderbolt Energy Consultancy



### **1. Introduction**

Pragjyotish College, established on 1st September 1954, seven years after Independence, became a beacon of learning and a symbol of aspirations for the common people of Assam, raring to build a new nation. Pandit Tirthanath Sarma, eminent scholar and litterateur, responded to and actively participated in the nation building by taking charge as the founder Principal of Pragjyotish College. From its modest inception as an arts college, Pragjyotish College has now developed into one of the premier institutions of higher education in Guwahati. At present, it is a well-known full-fledged under-graduate college imparting higher education in multiple streams.

Situated on the western bank of the Bharalu, a rivulet, in the western part of Guwahati, Pragjyotish College is about 1 kilometer away from its confluence with the mighty Brahmaputra. It is about 4 kilometers from the Guwahati Railway Station and at a distance of about 20 kilometers from the Lokapriya Gopinath Bordoloi International Airport. At the backdrop of the college is a beautiful panoramic view of Nilachal Hills, the famous abode of Mother Goddess Kamakhya.

In the emblem of the college, is ingrained the motto "तेजस्विनावधीतमस्तु" (May our study make us illumined) and a conch shell at the center on an eight-petalled full-blown beautiful-lotus, which symbolizes pure knowledge and the relationship between the teacher and the learner, praying to the Almighty for energy, protection, maintenance that ultimately leads to peace and bliss.

#### 1.1 Objectives

- 1. To study present level of Energy Consumption.
- 2. To Study Electrical Consumption.
- 3. To assess the various equipment/facilities from Energy efficiency aspect.
- 4. To study various measures to reduce the Energy Consumption.



### Thunderbolt Energy Consultancy



#### 1.2 Audit methodology

The objective of Energy Audit is to balance the total energy inputs with its use and to identify the energy conservation opportunities in the stream. Energy Audit also gives focused attention to energy cost and cost involved in achieving higher performance with technical and financial analysis. The best alternative is selected on financial analysis basis.

#### **1.3 Historical Data Analysis**

The historical data analysis involves establishment of energy consumption pattern to establish base line data on energy consumption and its variation with change in production volumes.

#### 1.4 Actual measurement and data analysis

This step involves actual site measurement and field trials using various portable measurement instruments. It also involves input to output analysis to establish actual operating equipment efficiency and finding out losses in the system.

#### 1.5 Identification and evaluation of Energy Conservation Opportunities

This step involves evaluation of energy conservation opportunities identified during the energy audit. It gives potential of energy saving and investment required to implement the proposed modifications with payback period. All recommendations for reducing losses in the system are backed with its cost benefit analysis.

#### **1.6 Monitoring and Control**

Energy accounting followed by energy monitoring and controlling is the first step of an Energy Management Program. With increasing energy prices, many organizations have incorporated sub-metering system in their plants. Sub metering is essential for monitoring, establishing energy consumption pattern, detailed engineering and energy saving after implementation of energy conservation projects. It is required to identify and monitor parameters for energy consumption per unit of production or services i.e., Specific Energy Consumption (SEC). SEC monitoring is an important tool for monitoring and proving of energy conservation measures.



# Thunderbolt Energy Consultancy



#### **1.7 About Thunderbolt Energy Consultancy**

We are pleased to introduce ourselves as **Thunderbolt Energy Consultancy**. We are a team of young Energy professionals, working to help Businesses and facilities become Energy efficient and promote green and clean Energy.

Our highly competent team of Certified Energy Managers, Energy Auditors, Safety Auditors, Analyst, Engineers and Experts having experience in variety of sectors and we are one of the leading engineering services and solutions providing company.

Our company was established in 2020 pioneering in quality and customer satisfaction. We have been a beacon of performance for the last 3 years and our vision is to deliver everlasting performance through our services.

**Thunderbolt Energy Consultancy** is extremely proud to announce that we have achieved ISO 9001:2015, ISO 14001:2015, ISO 50001:2018 and ISO/IEC 17020:2012 certification. Assessment for certification was done by QRO (Quality Research Organization) Certification LLP accredited by several bodies like, Egyptian Accreditation Council (EGAC) and UKAF (United Kingdom Akkreditation Forum). This certification not only anticipates the demands of our customers, but also reveals our commitment to providing quality services to all our existing and prospective customers.

We are providing services in various areas like

- > Energy Audit, Electrical Audit, Electrical Survey
- > Green Audit & Environmental Audit for all Entities
- > Safety Audit, Electrical safety audit, Safety survey
- Industrial Maintenance Services
- Project Management Consultancy
- Third-Party Audit



### Thunderbolt Energy Consultancy



### 2. Energy Details

The electricity supply for Pragjyotish College, Guwahati is provided by Assam Power Distribution Company Limited. The energy consumed by Pragjyotish College, Guwahati falls under HT Category. The facility also has 1 DG sets of 125 KVA. The DG set is mainly used for power failure from APDCL.

The energy efficiency assessment was conducted for the load connected to the mains supply of college building.

Consumer details:

#### Table 4 Details of energy consumption

| Name of Consumer              | Tariff Category                     | Consumer Account No. |
|-------------------------------|-------------------------------------|----------------------|
| Pragjyotish College, Guwahati | HT IV Bulk Supply (Govt. Education) | 00600002737          |

Mainly energy is used on this facility for the following purposes:

- 1) Lighting's load
- 2) Air conditioners
- 3) Fan load
- 4) Office equipment



# Thunderbolt Energy Consultancy



### **3. Study of connected load**

In this chapter, we present details of various connected electrical equipment and electrical load.

| Sr<br>N<br>o | Туре                | Equipment             | Wattag<br>e | A      | в      | с      | D       | E      | F      | G       | н      | I      | J | к       | L   | м | N | 0      | Total<br>numb<br>er | Loa<br>d,<br>kW |
|--------------|---------------------|-----------------------|-------------|--------|--------|--------|---------|--------|--------|---------|--------|--------|---|---------|-----|---|---|--------|---------------------|-----------------|
| 1            | LED Lighting        | LED (5 Watt)          | 5           | 4      |        |        |         |        |        |         |        |        |   |         |     |   |   |        | 4                   | 0.02            |
| 2            | LED Lighting        | LED (9 Watt)          | 9           | 5      | 3      | 1      |         | 2<br>7 | 1      | 21      |        |        |   |         |     |   |   | 3<br>0 | 88                  | 0.79            |
| 3            | LED Lighting        | LED (18 Watt)         | 18          | 6<br>4 | 1<br>4 | 4      | 8       | 3<br>0 | 5<br>1 | 61      | 1      | 1      |   | 1       |     | 2 |   |        | 247                 | 4.45            |
| 4            | LED Lighting        | LED (28 Watt)         | 28          |        | 9      |        |         |        |        | 1       | 2      |        |   | 11<br>1 |     |   |   |        | 123                 | 3.44            |
| 5            | LED Lighting        | LED (50 Watt)         | 50          | 1      | 2      |        |         | 1      |        |         |        |        |   |         |     |   |   |        | 4                   | 0.20            |
| 7            | LED Lighting        | Tube Light<br>(LED)   | 18          | 2<br>5 | 9<br>1 |        | 7<br>4  | 7<br>8 | 1<br>0 | 74      |        | 2<br>7 |   |         | 5   | 1 | 2 |        | 387                 | 4.52            |
| 8            | Non LED<br>Lighting | Tube old<br>(General) | 40          | 7<br>9 | 1<br>9 | 2<br>2 | 1<br>0  | 1<br>9 | 3<br>3 | 37      | 3<br>7 | 1<br>4 | 4 | 14      | 5   | 4 | 1 | 4<br>3 | 341                 | 19.08           |
| 9            | CFL                 | CFL 18 Watt           | 18          |        | 5      | 2      | 5       |        | 3      |         | 4      | 4      |   |         |     |   |   | 1<br>6 | 39                  | 0.70            |
| 10           | Fan Load            | Ceiling Fan           | 70          | 9<br>3 | 9<br>2 | 1<br>9 | 4 8     | 8<br>2 | 7<br>4 | 11<br>2 | 4      | 4 2    | 9 | 47      | 1 2 | 4 |   | 4<br>2 | 716                 | 50.12           |
| 11           | Fan Load            | Wall Fan              | 50          | 1      | 1<br>0 | 2      | 8       |        | 4      | 4       | 6      |        |   | 2       |     |   |   |        | 47                  | 2.35            |
| 12           | Fan Load            | Stand Fan             | 50          | 2      | 1      |        | 1       |        | 2      | 1       |        |        |   |         |     |   |   |        | 7                   | 0.35            |
| 13           | Fan Load            | Stand Fan             | 100         | 1 2    | 7      | 4      | 4       | 2      | 2      | 11      | 2      |        |   | 1       |     |   | 4 | 5      | 54                  | 5.40            |
| 14           | Air Conditioner     | A.C. 2 Star           | 2000        | 9      | 2      | 2      | 2       | 1      | 2      |         |        | 2      |   | 14      |     |   |   |        | 34                  | 68.00           |
| 15           | Air Conditioner     | A.C. 3 Star           | 1500        | 2      |        | 1      | 3       |        |        |         |        | 1      |   |         |     |   |   |        | 7                   | 10.50           |
| 16           | Office Load         | Computer              | 250         | 3      | 4      | 2<br>8 | 5       | 1 2    |        | 13      | 6      | 7      |   | 10      |     |   |   |        | 116                 | 29.00           |
| 17           | Office Load         | Aqua guard            | 500         | 2      | 2      | 2      |         |        | 1      |         |        |        |   |         |     |   |   | 2      | 9                   | 4.50            |
| 18           | Office Load         | Refrigerator          | 1000        | 1      | 1      |        | 1       | 1      |        |         |        |        | 2 |         |     |   |   | 1      | 7                   | 7.00            |
| 19           | Office Load         | CCTV Monitor          | 200         | 3      | 2      | 1      |         |        |        | 2       |        |        |   |         |     |   |   |        | 8                   | 1.60            |
| 20           | Office Load         | Xerox Machine         | 1000        | 2      | 4      |        |         |        |        |         |        |        | 1 | 2       |     |   |   |        | 9                   | 9.00            |
| 21           | Office Load         | Printer               | 500         | 1<br>3 | 4      | 2      | 3       | 1      | 1      | 6       | 1      | 2      |   | 3       |     |   |   |        | 36                  | 18.00           |
| 22           | Office Load         | T.V                   | 300         | 2      | 6      |        |         |        |        |         |        |        |   | 2       |     |   |   |        | 10                  | 3.00            |
| 23           | Office Load         | Water Cooler          | 500         | 2      | 2      |        |         |        |        |         |        |        |   | 2       |     |   |   | 1      | 7                   | 3.50            |
| 24           | Submersible<br>Pump | Water Pump            | 1119        | 2      |        |        |         |        |        |         |        |        |   |         |     |   |   | 1      | 3                   | 3.36            |
|              |                     |                       |             |        |        | Tota   | al Load | l kW   |        |         |        |        |   |         |     |   |   |        |                     | 248             |

Table 5 Location wise study of Electrical fittings in various buildings



# Thunderbolt Energy Consultancy



| Name of the Building                |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|
| A Block (Geology or Main Building)  |  |  |  |  |  |  |
| B Block (opposite to Main Building) |  |  |  |  |  |  |
| C Block (Statistics Building)       |  |  |  |  |  |  |
| D Block (Zoology Building)          |  |  |  |  |  |  |
| E Block (Chemistry Building)        |  |  |  |  |  |  |
| F Block (Commerce Building)         |  |  |  |  |  |  |
| G Block (Art Building)              |  |  |  |  |  |  |
| H Block (Boys common Room)          |  |  |  |  |  |  |
| I Block (Gym Sub Room Building)     |  |  |  |  |  |  |
| J Block (Canteen Building)          |  |  |  |  |  |  |
| K Block (Library Building)          |  |  |  |  |  |  |
| L Block (Auditorium Building)       |  |  |  |  |  |  |
| M Block (NCC Building)              |  |  |  |  |  |  |
| N Block (Boys toilet Building)      |  |  |  |  |  |  |
| O Block (Girls hostel Building)     |  |  |  |  |  |  |

Based on data collected from all buildings present in campus. The connected load in kW of all buildings is shown below:

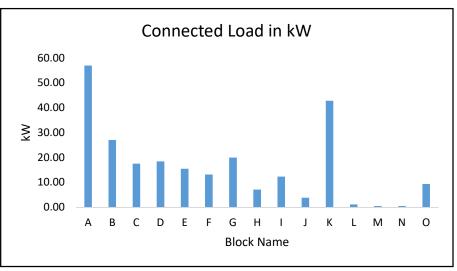



Figure 2- Block wise connected load in kW

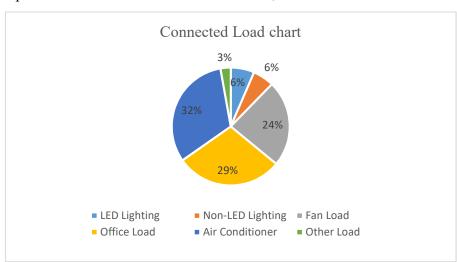


### Thunderbolt Energy Consultancy



| Particulars |                        | Total Lighting requirement | Lighting met<br>Through LED<br>Bulb | Lighting met<br>through other type<br>lamp |
|-------------|------------------------|----------------------------|-------------------------------------|--------------------------------------------|
| $(\Lambda)$ | Load in kW             | 30.21                      | 15.87                               | 14.34                                      |
| (A)         | Percentage %           | 100                        | 52.53                               | 47.47                                      |
| (B)         | Energy in kWh per year | 22,658                     | 11,901                              | 10,757                                     |
|             | Percentage %           | 100                        | 52.53                               | 47.47                                      |

#### Table 6 Lighting load percentage in total consumption


Note- Above calculation is based on 3 hours working and 250 days per annum.

Apart from above load, the college has Fan load, street lights. Individual fitting wise load is as under

| Sr. No. | Equipment        | Qty | Load, kW |
|---------|------------------|-----|----------|
| 1       | LED Lighting     | 853 | 16       |
| 2       | Non-LED Lighting | 380 | 14       |
| 3       | Fan Load         | 824 | 58       |
| 4       | Office Load      | 195 | 72       |
| 5       | Air Conditioner  | 41  | 79       |
| 6       | Other Load       | 10  | 7        |

#### Table 7 Equipment wise Connected Load

#### Data can be represented in terms of PIE chart as under,



#### Figure 3 Distribution of connected load



# Thunderbolt Energy Consultancy



### 4. Study of Electrical Energy Consumption

#### Consumer Name- Pragjyotish College, Guwahati

#### Consumer Number- 00600002737

In this chapter, electricity bills are studied for the analysis of electrical energy consumption.

| Sr. No. | Month  | Energy (kWh) | Bill Amount (Rs) | Max. Demand (kVA) |
|---------|--------|--------------|------------------|-------------------|
| 1       | Apr-22 |              |                  |                   |
| 2       | May-22 | 10,336       | 88,089           | 19.8              |
| 3       | Jun-22 | 10,774       | 89,638           | 63.94             |
| 4       | Jul-22 | 13,029       | 1,06,186         | 81.88             |
| 5       | Aug-22 | 15,106       | 1,26,093         | 89.17             |
| 6       | Sep-22 | 16,442       | 1,35,964         | 89.57             |
| 7       | Oct-22 | 9,448        | 84,449           | 64.57             |
| 8       | Nov-22 | 9,254        | 82,396           | 51.43             |
| 9       | Dec-22 | 6,884        | 65,351           | 27.31             |
| 10      | Jan-23 | 5,025        | 52,626           | 24.81             |
| 11      | Feb-23 | 6,423        | 61,827           | 30.22             |
| 12      | Mar-23 | 9,305        | 85,101           | 53.12             |
|         | Total  | 1,12,026     | 9,77,720         | 596               |

Table 8 Electricity bills of consumer 006000002737

Key observations of electricity bill are as follows,

 Table 9 Key observations of consumer 006000002737

| Sr no | Parameter | Energy consumed, (Units) | Bill Amount (Rs) | Max. Demand (kVA) |
|-------|-----------|--------------------------|------------------|-------------------|
| 1     | Maximum   | 16,442                   | 1,35,964         | 89.57             |
| 2     | Minimum   | 5,025                    | 52,626           | 19.80             |
| 3     | Average   | 10,184                   | 88,884           | 54.17             |



# Thunderbolt Energy Consultancy



Variation in energy consumption is as follows,

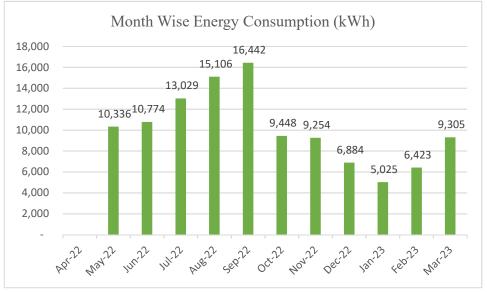



Figure 4 Month wise energy consumption of consumer 006000002737

Monthly variation in electricity bill is as follows,

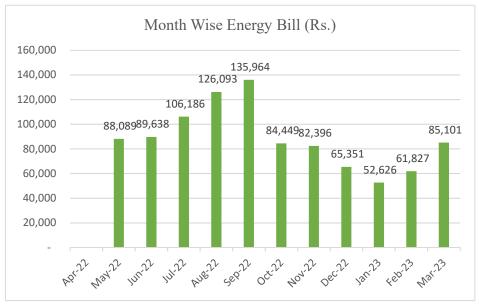
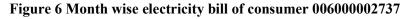



Figure 5 Month wise electricity bill of consumer 006000002737




# Thunderbolt Energy Consultancy



Month Wise Max. Demand (kVA) 100 89.17 89.57 90 81.88 80 64.57 63.94 70 53.12 60 51.43 50 40 30.22 27.31 24.81 30 19.8 20 10 0 APT-22 141.22 111-22 AUBSZZ Sepili M04.22 121-23 002.22 Decili feb.23 Mar.23

Monthly variation in Maximum demand is as follows,



### 5. Carbon Footprint

 A Carbon Foot print is defined as the Total Greenhouse Gas emissions (CO<sub>2</sub> emissions), emitted due to various activities. In this we compute the emissions of Carbon-Di-Oxide, by usage of the various form of Electrical Energy used by the College for performing its day-to-day activities

#### 2. Basis for computation of CO<sub>2</sub> Emissions:

The basis of Calculation for CO<sub>2</sub> emissions due to Electrical Energy is as under

1 Unit (kWh) of Electrical Energy releases **0.85 Kg of CO<sub>2</sub>** into atmosphere.

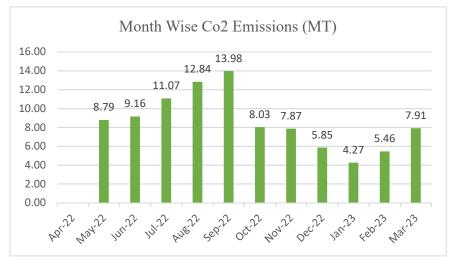
Based on the above Data we compute the  $CO_2$  emissions which are being released in to the atmosphere by the College due to its Day-to-Day operations.

We herewith furnish the details of various forms of Energy consumption as under



# Thunderbolt Energy Consultancy




#### Consumer Name- Pragjyotish College, Guwahati

#### Consumer Number- 006000002737

#### Table 10 Month wise Consumption of Energy & CO2 Emissions of consumer 006000002737

| No | Month  | Energy Consumed, kWh | CO2 Emissions, MT |
|----|--------|----------------------|-------------------|
| 1  | Apr-22 |                      |                   |
| 2  | May-22 | 10,336               | 8.79              |
| 3  | Jun-22 | 10,774               | 9.16              |
| 4  | Jul-22 | 13,029               | 11.07             |
| 5  | Aug-22 | 15,106               | 12.84             |
| 6  | Sep-22 | 16,442               | 13.98             |
| 7  | Oct-22 | 9,448                | 8.03              |
| 8  | Nov-22 | 9,254                | 7.87              |
| 9  | Dec-22 | 6,884                | 5.85              |
| 10 | Jan-23 | 5,025                | 4.27              |
| 11 | Feb-23 | 6,423                | 5.46              |
| 12 | Mar-23 | 9,305                | 7.91              |
|    | Total  | 1,12,026             | 89.62             |

#### In the following Chart we present the CO2 emissions due to usage of Electrical Energy.



#### Figure 7 Month wise CO2 emissions of consumer 006000002737



### Thunderbolt Energy Consultancy



### 6. Study of utilities

#### 6.1 Study of Lighting

In the facility, the lighting system can be divided mainly in two parts, indoor lighting and outdoor lighting. There are 341 FTL fittings with electronic/ magnetic chokes and It is recommended to install the 18 W LED Tube light fittings in place of these old Tube light fittings. There are 39 CFL fittings are observed and It is recommended to install the 9 W LED fittings in place of these CFL fittings.

#### 6.2 Air-conditioners

In the facility, there are about 41 Nos. of 1.5 Tr Air-conditioners. It is found that all ACs with BEE STAR Rated ACs.

#### 6.3 Ceiling Fans

At building facility, there are about 716 Nos Old Ceiling Fans, which consumed about 70 W of Electrical Energy. It is recommended to replace these old Fans with BEE STAR Rated Ceiling Fans.

#### 6.4 Office Load

In Office load facility have 116 nos of computer, Photocopier machine and Invertor system for office use.

#### 6.5 Submersible Pump Load

Drinking water purpose premise having 3 nos of water bore well pump. Water is supplied from bore well to tank and Pump set has capacity of 1.5 HP.



# Thunderbolt Energy Consultancy



### 7. Energy conservation proposals

#### 7.1 Replacement of 341 Nos Old, FTLs with 18 W LED fittings

In the facility, there are about 341 Nos, FTL fittings with electronic/magnetic chokes. It is recommended to the install 18 W LED Tube light fittings in place of these old fittings. In the following Table, we present the savings, investment required & payback analysis.

| Sr. No | Particulars                         | Value | Unit              |
|--------|-------------------------------------|-------|-------------------|
| 1      | Present Qty of Tube light fittings  | 341   | Nos               |
| 2      | Energy Demand of Tube light fitting | 40    | W/Unit            |
| 3      | Energy Demand of 18 W LED fitting   | 18    | W/Unit            |
| 4      | Reduction in demand                 | 22    | W/Unit            |
| 5      | Average Daily Usage period          | 3     | Hrs/Day           |
| 6      | Daily saving in Energy              | 23    | kWh/Day           |
| 7      | Annual Working Days                 | 250   | Nos               |
| 8      | Annual Energy Saving possible       | 5,627 | kWh/Annum         |
| 9      | Rate of Electrical Energy           | 6.75  | Rs/kWh            |
| 10     | Annual Monetary saving              | 0.380 | Rs. In Lakh/Annum |
| 11     | Cost of 18 W LED Tube               | 650   | Rs/Unit           |
| 12     | Investment required                 | 2.217 | Rs. In Lakh/Annum |
| 13     | Simple Payback period               | 70    | Months            |

#### Table 11 Tube light calculation

It is recommended to change lighting system in a phase manner.



# Thunderbolt Energy Consultancy



#### 7.2 Replacement of 39 Nos CFL fitting with 9 W LED fittings

In the facility, there are about 39 No fittings. It is recommended to the install 9 W LED light fittings in place of these old fittings. In the following Table, we present the savings, investment required & payback analysis.

| Sr. No | Particulars                        | Value | Unit              |
|--------|------------------------------------|-------|-------------------|
| 1      | Present Qty of CFL light fittings  | 39    | Nos               |
| 2      | Energy Demand of CFL light fitting | 18    | W/Unit            |
| 3      | Energy Demand of 9 W LED fitting   | 9     | W/Unit            |
| 4      | Reduction in demand                | 9     | W/Unit            |
| 5      | Average Daily Usage period         | 3     | Hrs/Day           |
| 6      | Daily saving in Energy             | 1.05  | kWh/Day           |
| 7      | Annual Working Days                | 250   | Nos               |
| 8      | Annual Energy Saving possible      | 263   | kWh/Annum         |
| 9      | Rate of Electrical Energy          | 6.75  | Rs/kWh            |
| 10     | Annual Monetary saving             | 0.018 | Rs. In Lakh/Annum |
| 11     | Cost of 18 W LED Tube              | 215   | Rs/Unit           |
| 12     | Investment required                | 0.084 | Rs. In Lakh/Annum |
| 13     | Simple Payback period              | 57    | Months            |

#### Table 12 CFL light calculation

It is recommended to change lighting system in a phase manner.



# Thunderbolt Energy Consultancy



#### 7.3 Replacement of 716 Nos Old Fans with STAR Rated Ceiling Fans

During the Audit, it was observed that there are 716 Nos, old fans. It is recommended to replace these old fans with 5 STAR Rated Fans.

In the following Table, we present the savings, investment required & payback analysis.

| Sr. No | Particulars                              | Value  | Unit              |
|--------|------------------------------------------|--------|-------------------|
| 1      | Present Qty of Old Fan fittings          | 716    | Nos               |
| 2      | Energy Demand of Old Ceiling Fan fitting | 70     | W/Unit            |
| 3      | Energy Demand of STAR Rated Fan          | 30     | W/Unit            |
| 4      | Reduction in demand                      | 40     | W/Unit            |
| 5      | Average Daily Usage period               | 3      | Hrs/Day           |
| 6      | Daily saving in Energy                   | 86     | kWh/Day           |
| 7      | Annual Working Days                      | 250    | Nos               |
| 8      | Annual Energy Saving potential           | 21,480 | kWh/Annum         |
| 9      | Rate of Electrical Energy                | 6.75   | Rs/kWh            |
| 10     | Annual Monetary saving                   | 1.450  | Rs. In Lakh/Annum |
| 11     | Cost of STAR Rated Ceiling Fan           | 2,200  | Rs/unit           |
| 12     | Investment required                      | 15.752 | Rs. In Lakh/Annum |
| 13     | Simple Payback period                    | 130    | Months            |

#### **Table 13 Fan calculation**

It is recommended to replace fan with energy efficient fan accordingly.



# Thunderbolt Energy Consultancy



#### 7.4 Replacement of 34 Nos old ACs with STAR Rated ACs.

During the field visit it is observed that 34 nos of 2 and 3 star ACs found. It is recommended to replace these old ACs with 5 STAR Rated ACs.

In the following Table, we present the savings, investment required & payback analysis.

| No | Particulars                    | Value  | Unit              |
|----|--------------------------------|--------|-------------------|
| 1  | Present Qty of 1.5 TR Old ACs  | 34     | Nos               |
| 2  | Energy Demand of Old 1.5 TR AC | 2.00   | kW/Unit           |
| 3  | Energy Demand of New AC        | 1.15   | kW/Unit           |
| 4  | Reduction in demand            | 0.85   | kW/Unit           |
| 5  | Average Daily Usage period     | 3      | Hrs/Day           |
| 6  | Daily saving in Energy         | 87     | kWh/Day           |
| 7  | Annual Working Days            | 250    | Nos               |
| 8  | Annual Energy Saving possible  | 21,675 | kWh/Annum         |
| 9  | Rate of Electrical Energy      | 6.75   | Rs/kWh            |
| 10 | Annual Monetary saving         | 1.463  | Rs. In Lakh/Annum |
| 11 | Cost of STAR Rated 1.5 TR AC   | 52,875 | Rs/unit           |
| 12 | Investment required            | 17.978 | Rs. In Lakh/Annum |
| 13 | Simple Payback period          | 147    | Months            |

**Table 14 Air Conditioner calculation** 

It is recommended to change ACs in a phase manner.



# Thunderbolt Energy Consultancy



#### 7.5 Optimize the Temperature Setting of ACs.

During the field visit it is observed that Temperature settings are very low.

During EEA study at facility it was observed that temperature settings of AC in office & meeting rooms were in the range of  $17^{0}$  C to  $22^{0}$  C.

It is known that a 1°C raise in AC temperature can help to save almost 6 % on power consumption (this can also be verified in BEE guideline).

| No | Particulars                    | Value | Unit              |
|----|--------------------------------|-------|-------------------|
| 1  | Present Qty of 1.5 TR ACs      | 34    | Nos               |
| 2  | Energy Demand of Old 1.5 TR AC | 2.00  | kW/Unit           |
| 3  | Estimated consumption of Acs   | 204   | kWh/hr            |
| 4  | Estimated Saving               | 6     | %                 |
| 5  | Operating Hrs per day          | 3     | hrs/day           |
| 6  | Operating days per year        | 250   | Days/Annum        |
| 7  | Annual Estimated Saving        | 1,224 | kWh/Annum         |
| 8  | Unit Rate                      | 6.75  | Rs/kWh            |
| 9  | Annual Saving                  | 0.083 | Rs. In Lakh/Annum |
| 10 | Investment required            | -     | Rs. In Lakh/Annum |
| 11 | Simple Payback period          | -     | Months            |

#### Table 15 Temperature Setting of ACs calculation

Hence it was recommended that temperature setting of outlet will be changed from present 23  $^{0}$ C to 25  $^{0}$ C and keeping inlet temperature unaltered.



### Thunderbolt Energy Consultancy



# 8. Summary of Savings

| Sr.<br>No | Recommendation                                                         | Annual Saving<br>potential,<br>kWh/Annum | Annual<br>Monetary<br>Gain, Rs.<br>Lakh/Annum | Investment<br>Required,<br>Rs.<br>Lakh/Annum | Payback<br>period,<br>Months |
|-----------|------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------|
| 1         | Replacement of 341 Nos<br>Tube Light fittings with<br>18W LED fittings | 5,627                                    | 0.380                                         | 2.217                                        | 70                           |
| 2         | Replacement of 39 Nos<br>CFL fittings with 9 W LED<br>fittings         | 263                                      | 0.018                                         | 0.084                                        | 57                           |
| 3         | Replacement of 716 Nos<br>Old Ceiling Fans with<br>STAR rating fans    | 21,480                                   | 1.450                                         | 15.752                                       | 130                          |
| 4         | Replacement of 34 Nos Old<br>1.5 TR ACs with STAR<br>rating ACs        | 21,675                                   | 1.463                                         | 17.978                                       | 147                          |
| 5         | Optimize the temperature<br>setting to 23-25 degree<br>Celsius         | 1,224                                    | 0.083                                         | NA                                           | NA                           |
|           | Total                                                                  | 50,269                                   | 3.393                                         | 36.030                                       | -                            |

#### **Table 16 Summary of savings**



# Thunderbolt Energy Consultancy

29 | P a g e