Department of Physics

Programme Specific Outcome (BA/B.Sc. in Physics)

The programme specific outcome of the syllabus prescribed for the major students of physics is mentioned below:

- 1. Understand the core theoretical concept of physics: Understand the core theoretical principles of physics.
- 2. Acquire analytical and logical skill for higher Education: Acquire the ability to analyse critical problems logically.
- 3. Excel in experimental physics and learn good laboratory practices and safety: Learn to handle experiments perfectly and safely.
- 4. Trained to take up jobs in allied fields: Use the knowledge of physics to seek opportunities in other allied fields.

COURSE OUTCOME

BSc in Physics (Honours) syllabus (CBCS)

1st Semester (Honours)

Paper Name: Mathematical Physics I Paper Code: PHY-HC-1016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Vector Calculus	Understand, Apply
students will be able to:	Unit II: First and Second order	
1. explain vector and its	Differential Equations	
applications in various fields,	Unit III: Orthogonal Curvilinear	
[understand]	Coordinates	
2. interpret differential equations	Unit IV: Dirac Delta function and	
and its applications, [apply]	its Properties	
3. use different coordinate systems	Unit V: Introduction to Probability	
[apply]	Unit VI: Theory of Errors	
4. use concept of probability and	-	
error [apply]		

Paper Name: Mechanics Paper Code: PHY-HC-1026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Fundamentals of Dynamics	Understand, Apply
students will be able to:	Unit II: Work and Energy	
1. explain Inertial and non-inertial	Unit III: Collisions	
reference frames, Newtonian	Unit IV: Rotational Dynamics	
motion, Galilean	Unit V: Elasticity	
transformations, projectile	Unit VI: Fluid Motion	
motion, [understand]	Unit VII: Gravitation and Central	
2. interpret work and energy,	Force Motion	
Elastic and inelastic collisions,	Unit VIII: Oscillations	
[apply]	Unit IX: Non-Inertial Systems	
3. explain motion under central	Unit X: Special Theory of	
force, simple harmonic	Relativity	
oscillations, [understand]		
4. use special theory of relativity.		
[apply]		

Paper Name: Mechanics Paper Code: PHY-HG-1016

Course	Outcome	Unit/ Topic	Bloom's Taxonomy Level
After th	ne completion of this course, the	Unit I: Vectors	Understand, Apply
students	s will be able to:	Unit II: Laws of Motion	
1.	explain the role of vectors and	Unit III: Momentum and Energy	
	coordinate systems in Physics,	Unit IV : Rotational Motion	
	[understand]	Unit V : Gravitation	
2.	solve Ordinary Differential	Unit VI : Oscillations	
	Equations, [apply]	Unit VII : Elasticity	
3.	apply laws of motion to various	Unit VII : Special Theory of	
	dynamical situations, [apply]	Relativity	
4.	explain Inertial reference frames		
	their transformations,		
-	[understand]		
5.	apply the concept of		
	conservation of energy,		
	momentum, angular momentum		
6	to basic problems, [apply]		
6.	explain phenomenon of simple		
	narmonic motion, motion under		
7	central force [understand]		
7.	Length contraction using analial		
	tength contraction using special		
0	use measuring instruments (like		
0.	screw gauge Vernier calipers		
	travelling microscope) [apply]		
9	learn various principles and		
).	associated measurable		
	narameters of measuring		
	instruments. [understand]		

Paper Name: Electricity & Magnetism Paper Code: PHY-HC-2016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Electric Field and Electric	Understand, Apply
students will be able to:	Potential	
1. explain electric and magnetic	Unit II: Dielectric Properties of	
fields in matter, dilectric	Matter	
properties of matter magnetic	Unit III: Magnetic Field	
properties of matter,	Unit IV: Magnetic Properties of	
electromagnetic induction.	Matter	
[understand]	Unit V: Electromagnetic Induction	
2. apply Kirchhofff's law in	Unit VI: Electrical Circuits	
different circuits. [apply]	Unit VII: Network Theorems	
3. apply network theorem in circuits [apply]	Unit VIII: Ballistic Galvanometer	

Paper Name: Waves & Optics Paper Code: PHY-HC-2026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Superposition of Collinear	Understand, Apply
students will be able to:	Harmonic Oscillations	
1. explain superposition of	Unit II: Superposition of Two	
harmonic oscillations, different	Perpendicular Harmonic	
types of wave motions,	Oscillations	
superposition of harmonic	Unit III: Wave Motion	
waves, [understand]	Unit IV: Velocity of Waves	
2. use interference and	Unit V: Superposition of Two	
interferometer, diffraction,	Harmonic Waves	
holography. [apply]	Unit VI: Wave Optics	
	Unit VII: Interference	
	Unit VIII: Interferometer	
	Unit IX: Diffraction	
	Unit X: Fraunhofer Diffraction	
	Unit XI: Holography	

Paper Name: Electricity & Magnetism Paper Code: PHY-HG-2016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Vector Analysis	Understand, Apply
students will be able to:	Unit II: Electrostatics	
1. apply Gauss's law of	Unit III: Magnetism	
electrostatics to solve a variety	Unit IV : Electromagnetic Induction	
of problems [apply]	Unit V : Maxwell's Equations and	
2. calculate the magnetic forces	EM Wave	
that act on moving charges		
and the magnetic fields due to		
currents, [apply]		
3. explain about magnetic		
materials, [understand]		
4. apply the concepts of		
induction to solve variety of		
problems. [apply]		
5. measure resistance (high and		
low), voltage, current, self and		
mutual inductance, capacitor,		
strength of magnetic field and		
its variation, [apply]		
6. understand different circuits		
RC, LCR etc. [understand]		

Paper Name: Mathematical Physics II Paper Code: PHY-HC-3016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Frobenius Method and	Apply
students will be able to:	Special Functions	
1. solve differential equation	Unit II: Partial Differential Equations	
using power series solution	Unit III: Some Special Integrals	
method [apply]	Unit IV: Matrix	
2. solve differential equation	Unit V: Fourier Series	
using separation of variables		
method, [apply]		
3. use special integrals, matrix,		
Fourier series. [apply]		

Paper Name: Thermal Physics Paper Code: PHY-HC-3026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Zeroth and First Law of	Understand
students will be able to:	Thermodynamics	
1. describe laws in	Unit II: Second Law of	
thermodynamics, in particular:	Thermodynamics	
entropy, temperature,	Unit III: Entropy	
thermodynamic potentials,	Unit IV: Thermodynamic Potentials	
Free energies, [understand]	Unit V: Maxwell's Thermodynamic	
2. explain Maxwell's relations in	Relations	
thermodynamics, behaviour of	Unit VI: Distribution of Velocities	
real gases. [understand]	Unit VII: Molecular Collisions	
	Unit VIII: Real Gases	

Paper Name: Digital Systems & Applications Paper Code: PHY-HC-3036

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Introduction to CRO	Understand, Apply, Analyse
students will be able to:	Unit II: Integrated Circuits	
1. explain the working principle	(qualitative treatment only)	
of CRO [understand]	Unit III: Digital Circuits	
2. apply digital logic to solve real	Unit IV: Boolean Algebra	
life problems [apply]	Unit V: Data Processing Circuits	
3. analyze combinational logic	Unit VI: Arithmetic Circuits	
circuits [analyse]	Unit VII: Sequential Circuits	
4. Classify different	Unit VIII: Timers: IC 555	
semiconductor memories	Unit IX: Shift Registers	
[understand]	Unit X: Counters	
5. organise sequential logic	Unit XI: Computer Organization	
circuits [analyse]	Unit XII: Intel 8085 Microprocessor	
6. analyze digital system design	Architecture	
using PLD [analyse]	Unit XIII: Introduction to Assembly	
sequential circuits [apply]	Language	

Paper Name: Thermal Physics & Statistical Mechanics Paper Code: PHY-HG-3016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Laws of Thermodynamics	Understand, Apply, Analyse
students will be able to:	Unit II: Thermodynamic Potentials	
1. explain the basic concepts of	Unit III: Kinetic Theory of Gases	
thermodynamics, the first and	Unit IV · Theory of Radiation	-
the second law of	Unit V · Statistical Mechanics	
thermodynamics, the concept	Chit V. Statistical Weenanies	
of entropy and the associated		
theorems, the thermodynamic		
potentials and their physical		
interpretations, Maxwell's		
thermodynamic relations,		
fundamentals of the kinetic		
theory of gases, Maxwell-		
Boltzman distribution law,		
equipartition of energies, mean		
free path of molecular		
collisions, viscosity, thermal		
conductivity, diffusion and		
Brownian motion, black body		
radiations, Stefan-		
Boltzmann's law, Rayleigh-		
Jean's law and Planck's law		
and their significances,		
quantum statistical		
distributions, viz., the Bose-		
Einstein statistics and the		
Fermi-Dirac statistics.		
[understand]		
2. measure of Planck's constant		
using black body radiation,		
[apply]		
3. determine Stefan's Constant,		
coefficient of thermal		
conductivity of a bad		
conductor and a good		
conductor [apply]		
4. determine the temperature		
coefficient of resistance		
[apply]		
5. examine variation of thermos		
emf across two junctions of a		
thermocouple with		
temperature etc. [analyse]		

Paper Name: Applied Optics Paper Code: PHY-SE-3074

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Sources and detectors	Understand, Apply
students will be able to:	Unit II: Holography	
1. determine of the grating radial	Unit III: Photonics: Fibre Optics	
spacing of the Compact Disc		
(CD) by reflection using He-Ne		
or solid state laser. [apply]		
2. find the width of the wire or		
width of the slit using		
diffraction pattern obtained by		
a He-Ne or solid state laser.		
[apply]		
3. find the polarization angle of		
laser light using polarizer and		
analyzer [apply]		
4. execute experiments with		
semiconductors [apply]		
5. record and reconstruct		
holograms [apply]		
6. describe a Michelson		
interferometer or a Fabry Perot		
interferometer [understand]		
7. measure the refractive index of		
air [apply]		

Paper Name: Mathematical Physics III Paper Code: PHY-HC-4016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Complex Analysis	Understand, Apply
students will be able to:	Unit II: Complex Integration	
1. solve complex integrals using	Unit III: Fourier Transforms	
residue theorem [apply]	Unit IV: Laplace Transforms	
2. apply Fourier and Laplace	Unit V: Tensor Algebra	
transforms in solving		
differential equations [apply]		
3. explain properties of tensor like		
transformation of coordinates,		
contravariant and co-variant		
tensors, indices rules for		
combining tensors [understand]		

Paper Name: Elements of Modern Physics Paper Code: PHY-HC-4026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Quantum Theory and	Understand
students will be able to:	Blackbody Radiation	
1. describe modern development in	Unit II: Uncertainty and Wave-	
physics, starting from Planck's	Particle Duality	
law, development of the idea of	Unit III: Schrödinger Equation	
probability interpretation and the	Unit IV: One-dimensional Box and	
formulation of Schrodinger	Step Barrier	
equation. [understand]	Unit V: Structure of the Atomic	
2. exaplin the structure of nucleus,	Nucleus	
radioactivity, fission and fusion	Unit VI: Radioactivity	
[understand]	Unit VII : Detection of nuclear	
3. conceptualize the principle of	radiation	
Laser [understand]	Unit VIII: Fission and Fusion	
	Unit IX: Lasers	

Paper Name: Analog Systems & Applications Paper Code: PHY-HC-4036

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Semiconductor Diodes	Undesratnd
students will be able to:	Unit II: Two-terminal Devices and	
1. describe about the physics of	their Applications	
semiconductor p-n junction	Unit III: Bipolar Junction	
and devices such as rectifier	Transistors	
diodes, zener diode,	Unit IV: Amplifiers	
photodiode etc. and bipolar	Unit V: Coupled Amplifier	
junction transistors, transistor	Unit VI: Feedback in Amplifiers	
biasing and stabilization	Unit VII: Sinusoidal Oscillators	
circuits [understand]	Unit VIII: Operational Amplifiers	
2. explain feedback in amplifiers	Unit IX: Applications of Op-Amps	
and the oscillator circuits	Unit X: Convversion	
3. classify operational amplifiers		
and their applications.		
[understand]		

Paper Name: Waves & Optics Paper Code: PHY-HG-4016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Superposition of Two	Understand, Apply
students will be able to:	Collinear Harmonic Oscillations	
1. describe simple harmonic	Unit II: Superposition of Two	
oscillation and superposition	Perpendicular Harmonic	
principle, importance of	Oscillations	
classical wave equation in	Unit III: Waves Motion	
transverse and longitudinal	Unit IV: Fluids	
waves [understand]	Unit V : Sound	
2. describe a range of physical	Unit VI : Wave Optics	
systems based on wave equation	Unit VIII : Michelson	
[understand]	Interferometer	
3. explain of normal modes in	Unit IX : Diffraction	
transverse and longitudinal	Unit X : Polarization	
waves: their frequencies and		
configurations, interference as		
superposition of waves from		
coherent sources derived from		
A Demonstrate and anten ding of		
4. Demonstrate understanding of		
interference and diffraction		
experiments, Polarization.		
[apply]		
5. use various optical instruments		
[appiy]		
0. make finer measurements of wavelength of light using		
Newton Rings experiment		
Fresnel Biprism etc. [apply]		
7 find out resolving power of		
optical equipment the motion of		
coupled oscillators [apply]		
8 explain Lissaious figures and		
behaviour of transverse.		
longitudinal waves [understand]		

Paper Name: Research & Technical Writing Paper Code: PHY-SE-4024

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Introduction	Understand, Apply
students will be able to:	Unit II: Technical Writing in LaTex	
1. identify and write different	Unit III: Scientific graphing and	
parts of technical reports,	data analysis	
[understand]		
2. write article, thesis [apply]		
3. make presentation in latex		
[apply]		
4. use different format of chart		
based on need [apply]		
5. plot data from different		
sources using Origin		
plot.[apply]		

Paper Name: Quantum Mechanics & Applications Paper Code: PHY-HC-5016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Time Dependent	Understand, Apply
students will be able to:	Schrödinger Equation	
1. explain the principles in	Unit II: Time Independent	
quantum mechanics, such as the	Schrödinger Equation	
Schrödinger equation, the wave	Unit III: Bound States	
function, the uncertainty	Unit IV: Hydrogen-like Atoms	
principle, stationary and non-	Unit V: Atoms in Electric &	
stationary states, time evolution	Magnetic Fields	
of solutions, as well as the	Unit VI: Many Electron Atoms	
relation between quantum	2	
mechanics and linear algebra.		
[understand]		
2. apply Schrodinger equation to		
square well potential and		
harmonic oscillator [apply]		
3. solve the Schrödinger equation		
for hydrogen atom [apply]		
4. describe angular momentum and		
spin, as well as the rules for		
quantization and addition of		
these, spin-orbit coupling and		
Zeeman Effect. [understand]		

Paper Name: Solid State Physics Paper Code: PHY-HC-5026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Crystal Structure	Understand
students will be able to:	Unit II: Elementary Lattice	
1. explain the main features of	Dynamics	
crystal lattices and phonons	Unit III: Magnetic Properties of	
[understand]	Matter	
2. describe the elementary lattice	Unit IV: Dielectric Properties of	
dynamics and its influence on	Materials	
the properties of materials	Unit V: Ferroelectric Properties of	
[understand]	Materials	
3. describe the main features of	Unit VI: Free Electron Theory of	
the physics of electrons in	Metals	
solids [understand]	Unit VII: Superconductivity	
4. explain the dielectric		
ferroelectric and magnetic		
properties of solids		
[understand]		
5. explain the basic concept in		
superconductivity.		
[understand]		

Paper Name: PHY-HE-5046 Paper Code: Physics of Devices and Instruments

Course Outcome	Unit/ Topic Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Devices Understand
students will be able to:	Unit II: Power supply and Filters
1. describe advanced electronics	Unit III: Active and Passive Filters
devices such as UJT, JFET,	Unit IV: Multivibrators
MOSFET, CMOS etc.,	Unit V: Phase Locked Loop(PLL)
[understand]	Unit VI: Processing of Devices
2. explain detailed process of IC	Unit VII: Digital Data
fabrication, Digital Data serial	Communication Standards
and parallel Communication	Unit VIII: Introduction to
Standards [understand]	communication systems
3. describe communication	
systems.[understand]	

Paper Name: Experimental Techniques Paper Code: PHY-HE-5016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Measurements	understand
students will be able to:	Unit II: Signals and Systems	
1. describe the errors in	Unit III: Shielding and Grounding	
measurement and statistical	Unit IV: Transducers & industrial	
analysis of data required while	instrumentation (working principle,	
performing an experiment	efficiency, applications)	
[understand]	Unit V: Digital Multimeter	
2. explain the working principle,	Unit VI: Impedance Bridges and Q-	
efficiency and applications of	meter	
transducers & industrial	Unit VII: Vacuum Systems	
instruments like digital		
multimeter, RTD, Thermistor,		
Thermocouples and		
Semiconductor type		
temperature sensors		
[understand]		

Paper Name: Nuclear and Particle Physics Paper Code: PHY-HE-5056

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: General Properties of Nuclei	Understand, Apply
students will be able to:	Unit II: Nuclear Models	
1. describe the sub atomic	Unit III: Radioactivity decay	
particles and their properties.	Unit IV: Nuclear Reactions	
[understand]	Unit V: Interaction of Nuclear	
2. explain different nuclear	Radiation with matter	
techniques and their	Unit VI: Detector for Nuclear	
applications in different	Radiations	
branches of physics and	Unit VII: Particle Accelerators	
societal application.	Unit VIII: Particle physics	
[understand]		
3. applied the concept of nuclear		
physics in medical,		
archeology, geology and other		
interdisciplinary fields of		
Physics and Chemistry.		
[apply]		

Paper Name: Electromagnetic Theory Paper Code: PHY-HC-6016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Maxwell Equations	Understand
students will be able to:	Unit II: EM Wave Propagation in	
1. describe the Maxwell's	Unbounded Media	
equations, propagation of	Unit III: EM Wave in Bounded	
electromagnetic (EM) waves in	Media	
different homogeneous-	Unit IV: Polarization of	
isotropic as well as anisotropic	Electromagnetic Waves	
unbounded and bounded media	Unit V: Rotatory Polarization	
[understand]	Unit VI: Optical Fibres	
2. explain production and	1	
detection of different types of		
polarized EM waves		
[understand]		
3. describe waveguides and fibre		
optics. [understand]		

Paper Name: Statistical Mechanics Paper Code: PHY-HC-6026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Classical Statistics	Apply
students will be able to:	Unit II: Classical Theory of	
1. apply Statistical Mechanics to	Radiation	
in various fields including	Unit III: Quantum Theory of	
Astrophysics, Semiconductors,	Radiation	
Plasma Physics, Bio-Physics,	Unit IV: Bose-Einstein Statistics	
Chemistry and in many other	Unit V: Fermi-Dirac Statistics	
directions. [apply]		

Paper Name: Advanced Mathematical Physics II Paper Code: PHY-HE-6036

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Calculus of Variations	Apply
students will be able to:	Unit II: Group Theory	
1. apply the concepts of	Unit III: Advanced Probability	
Calculus of Variations, Group	Theory	
Theory and Probability		
Theory to solve numerical		
problems in Physics [apply]		

Paper Name: Astronomy and Astrophysics Paper Code: PHY-HE-6046

Course Outcome		Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the		Unit I: Stellar properties	Understand
students will be able to:		Unit II: The Sun and the solar	
1.	explain the origin and	system	
	evolution of the Universe.	Unit III: Positional Astronomy	
	[understand]	Unit IV: Astronomical Techniques	
2.	describe the measurement of	Unit V: Galaxies	
	basic astronomical parameters	Unit VI: Large Scale Structure and	
	such as astronomical scales,	Cosmology	
	luminosity and astronomical		
	quantities. [understand]		
3.	describe the developments in		
	observational astrophysics		
	[understand]		
4.	explain the instruments		
	implemented for astronomical		
	observation [understand]		
5.	describe the formation of		
	planetary system and its		
	evolution with time,		
	[understand]		
6.	explain the physical properties		
	of Sun and the components of		
_	the solar system [understand]		
7.	describe the difference		
	between stellar and interstellar		
	components of our Milky Way		
0	galaxy [understand]		
8.	describe the origin and		
	evolution of galaxies, presence		
	of dark matter and large scale		
	structures of the Universe.		
	[understand]		

Paper Name: PHYSICS-DSE: CLASSICAL DYNAMICS Paper Code: PHY-HE-6056

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Classical Mechanics of	Understand, Apply
students will be able to:	Point Particles	
1. explain Newton's Laws of	Unit II: Small Amplitude	
Motion [understand]	Oscillations	
2. describe Special Theory of	Unit III: Special Theory of	
Relativity by 4-vectoer	Relativity	
approach and fluids.	Unit IV: Fluid Dynamics	
[understand]		
3. explain Lagrangian and		
Hamiltonian of a system		
[understand]		
4. solve the seen or unseen		
problems/numericals in		
classical mechanics.[apply]		

Paper Name: Communication Electronics Paper Code: PHY-HE-6016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Electronic communication	Understand
students will be able to:	Unit II: Analog Modulation	
1. describe the role of electronics	Unit III: Analog Pulse Modulation	
in communication	Unit IV: Digital Pulse Modulation	
[understand]	Unit V: Satellite Communication	
2. describe details of	Unit VI: Mobile Telephony	
communication techniques	System	
based on Analog Modulation,	Unit VII: GPS navigation system	
Analog and digital Pulse		
Modulation including PAM,		
PWM, PPM, ASK, PSK, FSK,		
[understand]		
3. explain communication and		
Navigation systems such as		
GPS and mobile telephony		
system. [understand]		